Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732733

ABSTRACT

The thermo-responsive behavior of Poly(N-isopropylacrylamide) makes it an ideal candidate to easily embed cells and allows the polymer mixture to be injected. However, P(NiPAAm) hydrogels possess minor mechanical properties. To increase the mechanical properties, a covalent bond is introduced into the P(NIPAAm) network through a biocompatible thiol-ene click-reaction by mixing two polymer solutions. Co-polymers with variable thiol or acrylate groups to thermo-responsive co-monomer ratios, ranging from 1% to 10%, were synthesized. Precise control of the crosslink density allowed customization of the hydrogel's mechanical properties to match different tissue stiffness levels. Increasing the temperature of the hydrogel above its transition temperature of 31 °C induced the formation of additional physical interactions. These additional interactions both further increased the stiffness of the material and impacted its relaxation behavior. The developed optimized hydrogels reach stiffnesses more than ten times higher compared to the state of the art using similar polymers. Furthermore, when adding cells to the precursor polymer solutions, homogeneous thermo-responsive hydrogels with good cell viability were created upon mixing. In future work, the influence of the mechanical micro-environment on the cell's behavior can be studied in vitro in a continuous manner by changing the incubation temperature.

2.
Bioconjug Chem ; 34(12): 2311-2318, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38055023

ABSTRACT

Surface functionalization with biological macromolecules is an important task for the development of sensor materials, whereby the interaction with other biological materials should be suppressed. In this work, we developed a novel multifunctional poly(2-ethyl-2-oxazoline)-dithiolane conjugate as a versatile linker for gold surface immobilization of amine-containing biomolecules, containing poly(2-ethyl-2-oxazoline) as antifouling polymer, dithiolane for surface immobilization, and activated esters for protein conjugation. First, a well-defined carboxylic acid containing copoly(2-ethyl-2-oxazoline) was synthesized by cationic ring-opening copolymerization of 2-ethyl-2-oxazoline with a methyl ester-containing 2-oxazoline monomer, followed by postpolymerization modifications. The side-chain carboxylic groups were then converted to amine-reactive pentafluorophenyl (PFP) ester groups. Part of the PFP groups was used for the attachment of the dithiolane moiety, which can efficiently bind to gold surfaces. The final copolymer contained 1.4 mol% of dithiolane groups and 4.5 mol% of PFP groups. The copolymer structure was confirmed by several analytical techniques, including NMR spectroscopy and size-exclusion chromatography. The kinetics of the PFP ester aminolysis and hydrolysis demonstrated significantly faster amidation compared to hydrolysis, which is essential for subsequent protein conjugation. Successful coating of gold surfaces with the polymer was confirmed by spectroscopic ellipsometry, showing a polymer brush thickness of 4.77 nm. Subsequent modification of the coated surfaces was achieved using bovine serum albumin as a model protein. This study introduces a novel reactive polymer linker for gold surface functionalization and offers a versatile polymer platform for various applications including biosensing and surface functionalization.


Subject(s)
Esters , Polymers , Esters/chemistry , Polymers/chemistry , Polyamines/chemistry
3.
Mater Today Bio ; 16: 100414, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36133793

ABSTRACT

Sustaining the release of highly dosed APIs from a matrix tablet is challenging. To address this challenge, this study evaluated the performance of thermoplastic poly (2-alkyl-2-oxazoline)s (PAOx) as matrix excipient to produce sustained-release tablets via three processing routes: (a) hot-melt extrusion (HME) combined with injection molding (IM), (b) HME combined with milling and compression and (c) direct compression (DC). Different PAOx (co-)polymers and polymer mixtures were processed with several active pharmaceutical ingredients having different aqueous solubilities and melting temperatures (metoprolol tartrate (MPT), metformin hydrochloride (MTF) and theophylline anhydrous (THA)). Different PAOx grades were synthesized and purified by the Supramolecular Chemistry Group, and the effect of PAOx grade and processing technique on the in vitro release kinetics was evaluated. Using the hydrophobic poly (2-n-propyl-2-oxazoline) (P n PrOx) as a matrix excipient allowed to sustain the release of different APIs, even at a 70% (w/w) drug load. Whereas complete THA release was not achieved from the P n PrOx matrix over 24 â€‹h regardless of the processing technique, adding 7.5% w/w of the hydrophilic poly (2-ethyl-2-oxazoline) to the hydrophobic P n PrOx matrix significantly increased THA release, highlighting the relevance of mixing different PAOx grades. In addition, it was demonstrated that the release of THA was similar from co-polymer and polymer mixtures with the same polymer ratios. On the other hand, as the release of MTF from a P n PrOx matrix was fast, the more hydrophobic poly (2-sec-butyl-2-oxazoline) (P sec BuOx) was used to retard MTF release. In addition, a mixture between the hydrophilic PEtOx and the hydrophobic P sec BuOx allowed accurate tuning of the release of MTF formulations. Finally, it was demonstrated that PAOx also showed a high ability to tune the in vivo release. IM tablets containing 70% MTF and 30% P sec BuOx showed a lower in vivo bioavailability compared to IM tablets containing a low PEtOx concentration (7.5%, w/w) in combination with P sec BuOx (22.5%, w/w). Importantly, the in vivo MTF blood level from the sustained release tablets correlated well with the in vitro release profiles. In general, this work demonstrates that PAOx polymers offer a versatile formulation platform to adjust the release rate of different APIs, enabling sustained release from tablets with up to 70% w/w drug loading.

4.
Chemistry ; 22(43): 15529-15535, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27624405

ABSTRACT

A highly efficient, diastereoselective, iron(III)-catalyzed intramolecular hydroamination/cyclization reaction involving α-substituted amino alkenes is described. Thus, enantiopure trans-2,5-disubstituted pyrrolidines and trans-5-substituted proline derivatives were synthesized by means of a combination of enantiopure starting materials, easily available from l-α-amino acids, with sustainable metal catalysts such as iron(III) salts. The scope of this methodology is highlighted in an enantiodivergent approach to the synthesis of both (+)- and (-)-pyrrolidine 197B alkaloids from l-glutamic acid. In addition, a computational study was carried out to gain insight into the complete diastereoselectivity of the transformation.


Subject(s)
Ferric Compounds/chemistry , Glutamic Acid/chemistry , Pyrrolidines/chemical synthesis , Amination , Catalysis , Pyrrolidines/chemistry , Stereoisomerism
5.
Chemistry ; 22(22): 7582-91, 2016 May 23.
Article in English | MEDLINE | ID: mdl-27106132

ABSTRACT

Three new triterpenoids with an unprecedented 6/6/6/6-fused tetracyclic carbon skeleton, montecrinanes A-C (1-3), were isolated from the root bark of Celastrus vulcanicola, along with known D:B-friedobaccharanes (4-6), and lupane-type triterpenes (7-12). The stereostructures of the new metabolites were elucidated based on spectroscopic (1D and 2D NMR) and spectrometric (HR-EIMS and HR-ESIMS) techniques. Their absolute configurations were determined by both NMR spectroscopy, with (R)-(-)-α-methoxyphenylacetic acid as a chiral derivatizing agent, and biogenetic considerations. Biogenetic pathways for montecrinane and D:B-friedobaccharane skeletons were proposed and studied by DFT methods. The theoretical results support the energetic feasibility of the putative biogenetic pathways, in which the 1,2-methyl shift from the secondary baccharenyl cation represents a novel and key reaction step for a new montecrinane skeleton.


Subject(s)
Celastrus/chemistry , Triterpenes/isolation & purification , El Salvador , Models, Theoretical , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Plant Bark/chemistry , Triterpenes/chemistry , Triterpenes/metabolism
6.
Chemistry ; 21(43): 15211-7, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26471437

ABSTRACT

The different factors that control the alkene Prins cyclization catalyzed by iron(III) salts have been explored by means of a joint experimental-computational study. The iron(III) salt/trimethylsilyl halide system has proved to be an excellent promoter in the synthesis of crossed all-cis disubstituted tetrahydropyrans, minimizing the formation of products derived from side-chain exchange. In this iron(III)-catalyzed Prins cyclization reaction between homoallylic alcohols and non-activated alkenes, two mechanistic pathways can be envisaged, namely the classical oxocarbenium route and the alternative [2+2] cycloaddition-based pathway. It is found that the [2+2] pathway is disfavored for those alcohols having non-activated and non-substituted alkenes. In these cases, the classical pathway, via the key oxocarbenium ion, is preferred. In addition, the final product distribution strongly depends upon the nature of the substituent adjacent to the hydroxy group in the homoallylic alcohol, which can favor or hamper a side 2-oxonia-Cope rearrangement.

7.
Org Lett ; 14(23): 5904-7, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23167915

ABSTRACT

Prins cyclization of bis-homoallylic alcohols with aldehydes catalyzed by iron(III) salts shows excellent cis selectivity and yields to form 2,7-disubstituted oxepanes. The iron(III) is able to catalyze this process with unactivated olefins. This cyclization was used as the key step in the shortest total synthesis of (+)-isolaurepan.


Subject(s)
Iron Compounds/chemistry , Oxepins/chemical synthesis , Alcohols/chemistry , Aldehydes/chemistry , Alkenes/chemistry , Catalysis , Combinatorial Chemistry Techniques , Cyclization , Laurencia/chemistry , Molecular Structure , Oxepins/chemistry , Stereoisomerism
8.
Org Lett ; 12(22): 5334-7, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-20968286

ABSTRACT

An efficient alkene aza-Cope-Mannich cyclization between 2-hydroxy homoallyl tosylamine and aldehydes in the presence of iron(III) salts to obtain 3-alkyl-1-tosyl pyrrolidines in good yields is described. The process is based on the consecutive generation of a γ-unsaturated iminium ion, 2-azonia-[3,3]-sigmatropic rearrangement, and further intramolecular Mannich reaction. Iron(III) salts are also shown to be excellent catalysts for the new aza-Cope-Mannich cyclization using 2-hydroxy homopropargyl tosylamine.


Subject(s)
Aza Compounds/chemistry , Chlorides/chemistry , Ferric Compounds/chemistry , Pyrroles/chemical synthesis , Pyrrolidines/chemical synthesis , Catalysis , Cyclization , Pyrroles/chemistry , Pyrrolidines/chemistry , Stereoisomerism
9.
Phys Chem Chem Phys ; 12(37): 11624-9, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20714484

ABSTRACT

One-dimensional supramolecular structures formed by adsorbing low coverages of 1,4-diisocyanobenzene on Au(111) at room temperature are obtained and imaged by scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. The structures originate from step edges or surface defects and arrange predominantly in a straight fashion on the substrate terraces along the <110> directions. They are proposed to consist of alternating units of 1,4-diisocyanobenzene molecules and gold atoms with a unit cell in registry with the substrate corresponding to four times the lattice interatomic distance. Their long 1-D chains and high thermal stability offer the potential to use them as conductors in nanoelectronic applications.


Subject(s)
Benzene Derivatives/chemistry , Gold/chemistry , Nitriles/chemistry , Adsorption , Microscopy, Scanning Tunneling/methods , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...