Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 601(3): 647-667, 2023 02.
Article in English | MEDLINE | ID: mdl-36515374

ABSTRACT

Few studies in amyotrophic lateral sclerosis (ALS) measure effects of the disease on inhibitory interneurons synapsing onto motoneurons (MNs). However, inhibitory interneurons could contribute to dysfunction, particularly if altered before MN neuropathology, and establish a long-term imbalance of inhibition/excitation. We directly assessed excitability and morphology of glycinergic (GlyT2 expressing) ventral lumbar interneurons from SOD1G93AGlyT2eGFP (SOD1) and wild-type GlyT2eGFP (WT) mice on postnatal days 6-10. Patch clamp revealed dampened excitability in SOD1 interneurons, including depolarized persistent inward currents (PICs), increased voltage and current threshold for firing action potentials, along with a marginal decrease in afterhyperpolarization duration. Primary neurites of ventral SOD1 inhibitory interneurons were larger in volume and surface area than WT. GlyT2 interneurons were then divided into three subgroups based on location: (1) interneurons within 100 µm of the ventral white matter, where Renshaw cells (RCs) are located, (2) interneurons interspersed with MNs in lamina IX, and (3) interneurons in the intermediate ventral area including laminae VII and VIII. Ventral interneurons in the RC area were the most profoundly affected, exhibiting more depolarized PICs and larger primary neurites. Interneurons in lamina IX had depolarized PIC onset. In lamina VII-VIII, interneurons were least affected. In summary, inhibitory interneurons show very early region-specific perturbations poised to impact excitatory/inhibitory balance of MNs, modify motor output and provide early biomarkers of ALS. Therapeutics like riluzole that universally reduce CNS excitability could exacerbate the inhibitory dysfunction described here. KEY POINTS: Spinal inhibitory interneurons could contribute to amyotrophic lateral sclerosis (ALS) pathology, but their excitability has never been directly measured. We studied the excitability and morphology of glycinergic interneurons in early postnatal transgenic mice (SOD1G93A GlyT2eGFP). Interneurons were less excitable and had marginally smaller somas but larger primary neurites in SOD1 mice. GlyT2 interneurons were analysed according to their localization within the ventral spinal cord. Interestingly, the greatest differences were observed in the most ventrally located interneurons. We conclude that inhibitory interneurons show presymptomatic changes that may contribute to excitatory/inhibitory imbalance in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice , Animals , Amyotrophic Lateral Sclerosis/pathology , Superoxide Dismutase-1/genetics , Motor Neurons/physiology , Spinal Cord/pathology , Mice, Transgenic , Interneurons/physiology , Disease Models, Animal , Superoxide Dismutase
2.
Neurorehabil Neural Repair ; 32(8): 735-745, 2018 08.
Article in English | MEDLINE | ID: mdl-30043670

ABSTRACT

BACKGROUND: Peripheral axon regeneration is improved when the nerve lesion under consideration has recently been preceded by another nerve injury. This is known as the conditioning lesion effect (CLE). While the CLE is one of the most robust and well characterized means to enhance motor axon regeneration in experimental models, it is not considered a clinically feasible strategy. A pharmacological means to re-produce the CLE is highly desirable. OBJECTIVE: To test whether chemodenervation with a clinical grade formulation of botulinum toxin A (BoTX) would be sufficient to reproduce the CLE. METHODS: We examined the effects of a 1-week preconditioning administration of BoTX on motor axon regrowth in both a mouse tibial nerve injury and human embryonic stem cell (hESC)-based model. We assessed neuronal reinnervation in vivo (mice) with retrograde tracers and histological analysis of peripheral nerve tissue after injections into the triceps surae muscle group. We assessed motor neuron neurite outgrowth in vitro (hESC) after incubation in BoTX by immunohistochemistry and morphometric analysis. RESULTS: We found that BoTX conditioning treatment significantly enhanced outgrowth of both murine motor axons in vivo and human MN neurites in vitro. CONCLUSIONS: BoTX preconditioning represents a pharmacological candidate approach to enhance motor axon regeneration in specific clinical scenarios such as nerve transfer surgery. Further studies are needed to elucidate the molecular mechanism.


Subject(s)
Axons/drug effects , Botulinum Toxins/pharmacology , Motor Neurons/drug effects , Nerve Regeneration/drug effects , Peripheral Nerve Injuries/drug therapy , Animals , Axons/physiology , Botulinum Toxins/therapeutic use , Embryonic Stem Cells , Humans , Male , Mice , Motor Neurons/physiology , Nerve Regeneration/physiology , Peripheral Nerve Injuries/physiopathology , Tibial Nerve/drug effects , Tibial Nerve/injuries , Tibial Nerve/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...