Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Data Brief ; 53: 110214, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38445199

ABSTRACT

Traditionally, biosorbents have been used to remove contaminants from polluted water, such as wastewater, landfill leachate, rainwater or drinking water. However, two alternative uses of biosorbents have been proposed relatively recently: the removal of heavy metals from fruit juices by biosorption and the use of saturated biosorbents as animal feed. Because these biosorbents are in contact with food or are used as animal feed, the concentration of contaminants in biosorbents must be known. In addition, the characterization of biosorbents is crucial because biosorbent properties affect both adsorption efficiency and the performance of full-scale biosorbent systems. This article presents data from Fourier transform infrared spectroscopy (FTIR) analysis, and the concentration of toxic metals (determined by ICP-MS) as well as pesticide residues was determined in ten biomass samples, namely, pea skins, straw, seaweed Fucus vesiculosus, wheat bran, rye bran, raspberry seeds, peat, buckwheat husks, highbush blueberry pulp, and blackcurrant pulp. Selected biomass samples were also characterized by scanning electron microscopy (SEM), nitrogen physisorption analysis, and pyrolysis-gas chromatography-mass spectrometry (Py-GC/ MS/FID) analysis.

2.
Chem Biodivers ; 10(7): 1284-94, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23847073

ABSTRACT

Bryophytes are the second largest taxonomic group in the plant kingdom; yet, studies conducted to better understand their chemical composition are rare. The aim of this study was to characterize the chemical composition of bryophytes common in Northern Europe by using elemental, spectral, and non-destructive analytical methods, such as Fourier transform IR spectrometry (FT-IR), solid-phase (13) C-NMR spectrometry, and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), for the purpose of investigating their chemotaxonomic relationships on the basis of chemical-composition data. The results of all these analyses showed that bryophytes consist mainly of carbohydrates. Judging by FT-IR spectra, the OH groups in combination of CO groups were the most abundant groups. The (13) C-NMR spectra provided information on the presence of such compounds as phenolics and lipids. It was found that the amount of phenolic compounds in bryophytes is relatively small. This finding definitely confirmed the absence of lignin in the studied bryophytes. Cluster analysis was used to better understand differences in the chemical composition of bryophyte samples and to evaluate possible usage of these methods in the chemotaxonomy of bryophytes.


Subject(s)
Bryophyta/chemistry , Carbohydrates/chemistry , Cluster Analysis , Gas Chromatography-Mass Spectrometry , Latvia , Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL