Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(39): 14541-14550, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37729543

ABSTRACT

Owing to the exceedingly small mass involved, complete elemental characterization of single nanoparticles demands a highly precise control of signal background and noise sources. LIBS has demonstrated remarkable merits for this task, providing a unique tool for the multielemental analysis of particles on the attogram-picogram mass scale. Despite this outstanding sensitivity, the air plasma acting as a heat source for particle dissociation and excitation is a meddling agent, often limiting the acquisition of an accurate sample signature. Although thermal effects associated with ultrashort laser pulses are known to be reduced when compared to the widely used nanosecond pulse duration regime, attempts to improve nanoinspection performance using ultrafast excitation have remained largely unexplored. Herein, picosecond laser pulses are used as a plasma excitation source for the elemental characterization of single nanoparticles isolated within optical traps in air at atmospheric pressure. Results for picosecond excitation of copper particles lead to a mass detection limit of 27 attogram, equivalent to single particles 18 nm in diameter. Temporally and wavelength-resolved plasma imaging reveals unique traits in the mechanism of atomic excitation in the picosecond regime, leading to a deeper understanding of the interactions occurring in single nanoparticle spectroscopy.

2.
Anal Chim Acta ; 1226: 340261, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36068060

ABSTRACT

The combination of data yielded by laser-induced breakdown spectroscopy (LIBS) and laser-induced plasma acoustics (LIPAc) is a topic of many prospective applications as these coexisting phenomena can cover different sample traits. Among the most interesting features that LIPAc could add to the expanded target picture is information concerning structure and geophysical characteristics elusive to LIBS. In the present work, frequency spectra of minerals were explored to discriminate between chemically similar mineralogical phases. Several replicas of four different Fe-based minerals were analyzed to identify spectral traits linked to their chemistry in the frequency domain. First, the similarity between replicas of the same mineral family was verified and then, the cosine and Euclidian distances to minerals of different species were calculated to evaluate the discrimination capabilities of frequency spectra with results being compared to those obtained by LIBS. A partial least-squares one-vs-all model is described seeking to demonstrate sample classification by frequency means exclusively. As the use of LIBS-LIPAc for in-field mineral sorting has sparked interest, experiments reported were performed in stand-off within a thermal vacuum chamber (TVC). The TVC allowed data acquisition under Earth and Mars-like conditions, with the latter serving as a test of high relevance to assess the general applicability of the conclusions reached in Earth environment. Thorough discussion of data treatment is included with a focus on the impact of interference patterns arising from the laser-induced shockwave interaction with the medium surrounding the sample to avoid non-sample related information in the data processing schemes.


Subject(s)
Lasers , Minerals , Acoustics , Atmosphere , Minerals/chemistry , Spectrum Analysis/methods
3.
Anal Chim Acta ; 1225: 340224, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36038235

ABSTRACT

Acoustics recordings from laser-induced plasmas are becoming increasingly regarded as a complementary source of information from the inspected sample. The propagation of these waves is susceptible to be modified by the physicochemical traits of the sample, thus yielding specific details that can be used for sorting and identification of targets. Still, the relative fragility of the acoustic wave poses major challenges to the applicability of laser-induced acoustics. Echoes and reflections sourcing from intrasample parameters as well as from interactions of the acoustic wave with the surroundings of the inspected target can dilute the analytical information directly related to the object contained within the recordings. The present work aims to experimentally scrutinize the impact of different parameters internal and external to the sample into the final acoustic signal from laser-induced plasmas in order to accurately use this information source for characterization purposes. Variables inherent to the sample such as dimensions, porosity and absorption coefficient, which guides the laser-matter coupling process, have been, for the first time, systematically studied using ad-hoc solids to thoroughly isolate their influence on the signal. Moreover, modulation of soundwave induced by the surroundings of the probed target and the anisotropy of the acoustic signal because of the angle at which the plasma is formed, have been evaluated.


Subject(s)
Acoustics , Models, Theoretical , Anisotropy , Lasers , Porosity
4.
Appl Spectrosc ; 76(8): 946-958, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35766826

ABSTRACT

The shockwave generated alongside the plasma is an intimately linked, yet often neglected additional input for the characterization of solid samples by laser-induced breakdown spectroscopy (LIBS). The present work introduces a dual LIBS-acoustics sensor that takes advantage of the analysis of the acoustic spectrum yielded by shockwaves produced on different geological samples to enhance the discrimination power of LIBS in materials featuring similar optical emission spectra. Six iron-based minerals were tested at a distance of 2 m using 1064 nm laser light and under pressure values ranging from 7 to 1015 mbar. These experimental parameters were selected to assess the effects of pressure, one of the main factors conditioning the propagation of sound as well as a commonly investigated influence in LIBS experiments. Moreover, precise values for carrying out the analyses were set based on one of the most exciting scenarios in which LIBS data may be enhanced by laser-induced acoustics: space exploration. This is exemplified by the tasks performed by the Mars 2020 SuperCam instrument located onboard the Perseverance rover. Authors evaluated the use of acoustic signals both in the time-domain and frequency-domain in sensitive cases for the distinguishing of minerals exhibiting LIBS spectra featuring almost the same emission lines using PCA schemes for each pressure setting. Thus, we report herein the impact of the surrounding pressure level upon this diagnostic tool. Overall, this paper seeks to show how the analytical potential of simultaneous phenomena taking place during a laser-produced plasma event is subjected to the defined operational conditions.

5.
Anal Chem ; 94(3): 1840-1849, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35019262

ABSTRACT

The shockwave produced alongside the plasma during a laser-induced breakdown spectroscopy event can be recorded as an acoustic pressure wave to obtain information related to the physical traits of the inspected sample. In the present work, a mid-level fusion approach is developed using simultaneously recorded laser-induced breakdown spectroscopy (LIBS) and acoustic data to enhance the discrimination capabilities of different iron-based and calcium-based mineral phases, which exhibit nearly identical spectral features. To do so, the mid-level data fusion approach is applied concatenating the principal components analysis (PCA)-LIBS score values with the acoustic wave peak-to-peak amplitude and with the intraposition signal change, represented as the slope of the acoustic signal amplitude with respect to the laser shot. The discrimination hit rate of the mineral phases is obtained using linear discriminant analysis. Owing to the increasing interest for in situ applications of LIBS + acoustics information, samples are inspected in a remote experimental configuration and under two different atmospheric traits, Earth and Mars-like conditions, to validate the approach. Particularities conditioning the response of both strategies under each atmosphere are discussed to provide insight to better exploit the complex phenomena resulting in the collected signals. Results reported herein demonstrate for the first time that the characteristic sample input in the laser-produced acoustic wave can be used for the creation of a statistical descriptor to synergistically improve the capabilities of LIBS of differentiation of rocks.

6.
Anal Chem ; 93(4): 2635-2643, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33400487

ABSTRACT

In the present work, the authors introduce a shape-specific methodology for evaluating the full elemental composition of single micro- and nanoparticles fabricated by laser ablation of bulk targets. For this purpose, bronze samples were directly ablated within an ablation cell, originating dry aerosols consisting of multielemental particles. The in situ generated particles were first optically trapped using air at atmospheric pressure as medium and, then, probed by laser-induced breakdown spectroscopy (LIBS). A key aspect of this technology is the circumvention of possible material losses owing to transference into the inspection instrument while providing the high absolute sensitivity of single-particle LIBS analysis. From the results, we deepen the knowledge in laser-particle interaction, emphasizing fundamental aspects such as matrix effects and polydispersity during laser ablation. The dual role of air as the atomization and excitation source during the laser-particle interaction is discussed on the basis of spectral evidences. Fractionation was one of the main hindrances as it led to particle compositions differing from that of the bulk material. To address possible preferential ablation of some species in the laser-induced plasma, two fluence regimes were used for particle production, 23 and 110 J/cm2. LIBS analysis revealed a relationship between chemical composition of the individual particles and their sizes. At 110 J/cm2, 65% of the dislodged particles were distributed in the range of 100-500 nm, leading to a higher variability of the LIBS spectra among the inspected nanoparticles. In contrast, at 23 J/cm2, around 30% of the aerosolized particles were larger than 1 µm. At this regime, the composition better resembled the bulk material. Therefore, we present a pathway to evaluate how adequate the fabrication parameters are toward yielding particles of a specific morphology while preserving compositional resemblance to the parent bulk sample.

7.
Sci Rep ; 10(1): 1198, 2020 Jan 27.
Article in English | MEDLINE | ID: mdl-31988351

ABSTRACT

In a nanoplasmonic context, copper (Cu) is a potential and interesting surrogate to less accessible metals such as gold, silver or platinum. We demonstrate optical trapping of individual Cu nanoparticles with diameters between 25 and 70 nm and of two ionic Cu nanoparticle species, CuFe2O4 and CuZnFe2O4, with diameters of 90 nm using a near infrared laser and quantify their interaction with the electromagnetic field experimentally and theoretically. We find that, despite the similarity in size, the trapping stiffness and polarizability of the ferrites are significantly lower than those of Cu nanoparticles, thus inferring a different light-particle interaction. One challenge with using Cu nanoparticles in practice is that upon exposure to the normal atmosphere, Cu is spontaneously passivated by an oxide layer, thus altering its physicochemical properties. We theoretically investigate how the presence of an oxide layer influences the optical properties of Cu nanoparticles. Comparisons to experimental observations infer that oxidation of CuNPs is minimal during optical trapping. By finite element modelling we map out the expected temperature increase of the plasmonic Cu nanoparticles during optical trapping and retrieve temperature increases high enough to change the catalytic properties of the particles.

8.
Anal Chem ; 91(11): 7444-7449, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31074601

ABSTRACT

Simultaneous detection of multiple constituents in the characterization of state-of-the-art nanomaterials is an elusive topic to a majority of the analytical techniques covering the field of nanotechnology. Optical catapulting (OC) and optical trapping (OT) have recently been combined with laser-induced breakdown spectroscopy (LIBS) to provide single-nanoparticle resolution and attogram detection power. In the present work, the multielemental capabilities of this approach are demonstrated by subjecting two different types of nanometric ferrite particles to LIBS analysis. Up to three metallic elements in attogram quantities are consistently detected within single laser events. Individual excitation efficiency for each species is quantified from particle spectra showing an exponential correlation between photon production and the energy of the upper level of the monitored atomic line. Moreover, a new sampling strategy based in skimmer-like 3D printed cones that allows for thin dry nanoparticle aerosols to be formed via optical catapulting is introduced. Enhanced sampling resulted in an increase of the sampling throughput by facilitating stable atmospheric-pressure optical trapping of individual particles and spectroscopic chemical characterization within a short timeframe.

10.
Angew Chem Int Ed Engl ; 56(45): 14178-14182, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28877398

ABSTRACT

Current trends in nanoengineering are bringing along new structures of diverse chemical compositions that need to be meticulously defined in order to ensure their correct operation. Few methods can provide the sensitivity required to carry out measurements on individual nano-objects without tedious sample pre-treatment or data analysis. In the present study, we introduce a pathway for the elemental identification of single nanoparticles (NPs) that avoids suspension in liquid media by means of optical trapping and laser-induced plasma spectroscopy. We demonstrate spectroscopic detection and identification of individual 25(±3.7) to 70(±10.5) nm in diameter Cu NPs stably trapped in air featuring masses down to 73±35 attograms. We found an increase in the absolute number of photons produced as size of the particles decreased; pointing towards a more efficient excitation of ensembles of only ca. 7×105 Cu atoms in the onset plasma.

SELECTION OF CITATIONS
SEARCH DETAIL
...