Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis ; 24(6): 11, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38869372

ABSTRACT

Microsaccades-tiny fixational eye movements-improve discriminability in high-acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at the perifovea, we examined microsaccade characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: horizontal-vertical anisotropy (better discrimination along the horizontal than vertical meridian) and vertical meridian asymmetry (better discrimination along the lower than upper vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence, the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.


Subject(s)
Photic Stimulation , Saccades , Visual Fields , Humans , Saccades/physiology , Visual Fields/physiology , Male , Adult , Female , Young Adult , Photic Stimulation/methods , Fixation, Ocular/physiology , Orientation/physiology , Discrimination, Psychological/physiology , Fovea Centralis/physiology
2.
bioRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38260406

ABSTRACT

Microsaccades-tiny fixational eye movements- improve discriminability in high acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at perifovea, we examined MS characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: Horizontal-Vertical Anisotropy (better discrimination along the horizontal than vertical meridian), and Vertical Meridian Asymmetry (better discrimination along the lower- than upper-vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.

3.
Cereb Cortex Commun ; 3(1): tgab066, 2022.
Article in English | MEDLINE | ID: mdl-35088052

ABSTRACT

Visual stimulus-induced gamma oscillations in electroencephalogram (EEG) recordings have been recently shown to be compromised in subjects with preclinical Alzheimer's Disease (AD), suggesting that gamma could be an inexpensive biomarker for AD diagnosis provided its characteristics remain consistent across multiple recordings. Previous magnetoencephalography studies in young subjects have reported consistent gamma power over recordings separated by a few weeks to months. Here, we assessed the consistency of stimulus-induced slow (20-35 Hz) and fast gamma (36-66 Hz) oscillations in subjects (n = 40) (age: 50-88 years) in EEG recordings separated by a year, and tested the consistency in the magnitude of gamma power, its temporal evolution and spectral profile. Gamma had distinct spectral/temporal characteristics across subjects, which remained consistent across recordings (average intraclass correlation of ~0.7). Alpha (8-12 Hz) and steady-state-visually evoked-potentials were also reliable. We further tested how EEG features can be used to identify 2 recordings as belonging to the same versus different subjects and found high classifier performance (AUC of ~0.89), with temporal evolution of slow gamma and spectral profile being most informative. These results suggest that EEG gamma oscillations are reliable across sessions separated over long durations and can also be a potential tool for subject identification.

4.
PLoS Comput Biol ; 17(8): e1009322, 2021 08.
Article in English | MEDLINE | ID: mdl-34428201

ABSTRACT

Despite possessing the capacity for selective attention, we often fail to notice the obvious. We investigated participants' (n = 39) failures to detect salient changes in a change blindness experiment. Surprisingly, change detection success varied by over two-fold across participants. These variations could not be readily explained by differences in scan paths or fixated visual features. Yet, two simple gaze metrics-mean duration of fixations and the variance of saccade amplitudes-systematically predicted change detection success. We explored the mechanistic underpinnings of these results with a neurally-constrained model based on the Bayesian framework of sequential probability ratio testing, with a posterior odds-ratio rule for shifting gaze. The model's gaze strategies and success rates closely mimicked human data. Moreover, the model outperformed a state-of-the-art deep neural network (DeepGaze II) with predicting human gaze patterns in this change blindness task. Our mechanistic model reveals putative rational observer search strategies for change detection during change blindness, with critical real-world implications.


Subject(s)
Blindness/physiopathology , Models, Neurological , Humans , Neural Networks, Computer , Probability , Saccades
5.
Elife ; 102021 06 08.
Article in English | MEDLINE | ID: mdl-34099103

ABSTRACT

Alzheimer's disease (AD) in elderly adds substantially to socioeconomic burden necessitating early diagnosis. While recent studies in rodent models of AD have suggested diagnostic and therapeutic value for gamma rhythms in brain, the same has not been rigorously tested in humans. In this case-control study, we recruited a large population (N = 244; 106 females) of elderly (>49 years) subjects from the community, who viewed large gratings that induced strong gamma oscillations in their electroencephalogram (EEG). These subjects were classified as healthy (N = 227), mild cognitively impaired (MCI; N = 12), or AD (N = 5) based on clinical history and Clinical Dementia Rating scores. Surprisingly, stimulus-induced gamma rhythms, but not alpha or steady-state visually evoked responses, were significantly lower in MCI/AD subjects compared to their age- and gender-matched controls. This reduction was not due to differences in eye movements or baseline power. Our results suggest that gamma could be used as a potential screening tool for MCI/AD in humans.


Alzheimer's disease is one of the most common forms of dementia, characterised by declining memory and thinking skills, and behavioural changes that worsen over time. It affects millions of people worldwide, mostly in older age, and yet early indicators of the disease are lacking. Most cases are only diagnosed once a person's brain function becomes noticeably impaired, even though known biological changes underpin the disease. Detecting Alzheimer's disease early could aid diagnosis and enable early intervention, while also improving the chances of finding treatments to halt or reverse the disease. Currently, brain function is measured by performing cognitive tests, such as remembering a set of words, imaging the brain with MRIs or CT scans, and blood or spinal fluid tests. Many of these tests can be invasive and expensive, so researchers are exploring whether measuring oscillations in the brain's electrical activity can be a non-invasive and chepaer way of testing brain function. Gamma oscillations are rhythmic signals, thought to be involved in attention and working memory. Animals used to study Alzheimer's disease have shown some abnormalities in gamma oscillations, and studies of healthy humans have also observed a decline in the strength and frequency of these oscillations with age. These findings have spurred an interest in understanding the link between gamma oscillations and AD in humans. To investigate this link, Murty et al. measured patterns of brain activity in elderly people chosen from the community using electrodes placed on their scalps (a technique called electroencephalography). These participants watched certain images previously shown to elicit gamma oscillations. Participants who were later diagnosed with early Alzheimer's disease had weaker gamma oscillations than their cognitively healthy peers in the part of the brain that processes visual images. These results build upon previous findings from animal research suggesting that gamma oscillations may be disrupted in early Alzheimer's disease. The work by Murty et al. could lead the way to new ways of diagnosing Alzheimer's disease, where early indicators are urgently needed.


Subject(s)
Alzheimer Disease/physiopathology , Cognitive Dysfunction/physiopathology , Gamma Rhythm/physiology , Aged , Aged, 80 and over , Case-Control Studies , Evoked Potentials, Visual/physiology , Female , Humans , Male , Middle Aged
6.
Atten Percept Psychophys ; 83(7): 2784-2794, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34036535

ABSTRACT

Performance as a function of polar angle at isoeccentric locations across the visual field is known as a performance field (PF) and is characterized by two asymmetries: the HVA (horizontal-vertical anisotropy) and VMA (vertical meridian asymmetry). Exogenous (involuntary) spatial attention does not affect the shape of the PF, improving performance similarly across polar angle. Here we investigated whether endogenous (voluntary) spatial attention, a flexible mechanism, can attenuate these perceptual asymmetries. Twenty participants performed an orientation discrimination task while their endogenous attention was either directed to the target location or distributed across all possible locations. The effects of attention were assessed either using the same stimulus contrast across locations or equating difficulty across locations using individually titrated contrast thresholds. In both experiments, endogenous attention similarly improved performance at all locations, maintaining the canonical PF shape. Thus, despite its voluntary nature, like exogenous attention, endogenous attention cannot alleviate perceptual asymmetries at isoeccentric locations.


Subject(s)
Attention , Visual Fields , Anisotropy , Humans
7.
Front Aging Neurosci ; 12: 576922, 2020.
Article in English | MEDLINE | ID: mdl-33328959

ABSTRACT

A decline in declarative or explicit memory has been extensively characterized in cognitive aging and is a hallmark of cognitive impairments. However, whether and how implicit perceptual memory varies with aging or cognitive impairment is unclear. Here, we compared implicit perceptual memory and explicit memory measures in three groups of participants: (1) 59 healthy young volunteers (20-30 years); (2) 269 healthy old volunteers (50-90 years) and (3) 21 patients with mild cognitive impairment, i.e., MCI (50-90 years). To measure explicit memory, participants were tested on standard recognition and recall tasks. To measure implicit perceptual memory, we used a classic perceptual priming paradigm. Participants had to report the shape of a visual search pop-out target whose color or position was varied randomly across trials. Perceptual priming was measured as the speedup in response time for targets that repeated in color or position. Our main findings are as follows: (1) Explicit memory was weaker in old compared to young participants, and in MCI patients compared to age- and education-matched controls; (2) Surprisingly, perceptual priming did not always decline with age: color priming was smaller in older participants but position priming was larger; (3) Position priming was less frequent in the MCI group compared to matched controls; (4) Perceptual priming and explicit memory were uncorrelated across participants. Thus, perceptual priming can increase or decrease with age or cognitive impairment, but these changes do not covary with explicit memory.

8.
Neuroimage ; 215: 116826, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32276055

ABSTRACT

Gamma rhythms (~20-70 â€‹Hz) are abnormal in mental disorders such as autism and schizophrenia in humans, and Alzheimer's disease (AD) models in rodents. However, the effect of normal aging on these oscillations is unknown, especially for elderly subjects in whom AD is most prevalent. In a first large-scale (236 subjects; 104 females) electroencephalogram (EEG) study on gamma oscillations in elderly subjects (aged 50-88 years), we presented full-screen visual Cartesian gratings that induced two distinct gamma oscillations (slow: 20-34 â€‹Hz and fast: 36-66 â€‹Hz). Power decreased with age for gamma, but not alpha (8-12 â€‹Hz). Reduction was more salient for fast gamma than slow. Center frequency also decreased with age for both gamma rhythms. The results were independent of microsaccades, pupillary reactivity to stimulus, and variations in power spectral density with age. Steady-state visual evoked potentials (SSVEPs) at 32 â€‹Hz also reduced with age. These results are crucial for developing gamma/SSVEP-based biomarkers of cognitive decline in elderly.


Subject(s)
Aging/physiology , Electroencephalography/trends , Evoked Potentials, Visual/physiology , Gamma Rhythm/physiology , Health Status , Visual Cortex/physiology , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Photic Stimulation/methods , Young Adult
9.
J Cogn Neurosci ; 29(12): 2068-2080, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28820676

ABSTRACT

As we look around the world, selecting our targets, competing events may occur at other locations. Depending on current goals, the viewer must decide whether to look at new events or to ignore them. Two experimental paradigms formalize these response options: double-step saccades and saccadic inhibition. In the first, the viewer must reorient to a newly appearing target; in the second, they must ignore it. Until now, the relationship between reorienting and inhibition has been unexplored. In three experiments, we found saccadic inhibition ∼100 msec after a new target onset, regardless of the task instruction. Moreover, if this automatic inhibition is boosted by an irrelevant flash, reorienting is facilitated, suggesting that saccadic inhibition plays a crucial role in visual behavior, as a bottom-up brake that buys the time needed for decisional processes to act. Saccadic inhibition may be a ubiquitous pause signal that provides the flexibility for voluntary behavior to emerge.


Subject(s)
Inhibition, Psychological , Motor Activity , Orientation , Saccades , Adolescent , Adult , Eye Movement Measurements , Humans , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...