Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(8): 7326-7334, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37058341

ABSTRACT

Janus transition-metal dichalcogenide monolayers are artificial materials, where one plane of chalcogen atoms is replaced by chalcogen atoms of a different type. Theory predicts an in-built out-of-plane electric field, giving rise to long-lived, dipolar excitons, while preserving direct-bandgap optical transitions in a uniform potential landscape. Previous Janus studies had broad photoluminescence (>18 meV) spectra obfuscating their specific excitonic origin. Here, we identify the neutral and the negatively charged inter- and intravalley exciton transitions in Janus WSeS monolayers with ∼6 meV optical line widths. We integrate Janus monolayers into vertical heterostructures, allowing doping control. Magneto-optic measurements indicate that monolayer WSeS has a direct bandgap at the K points. Our results pave the way for applications such as nanoscale sensing, which relies on resolving excitonic energy shifts, and the development of Janus-based optoelectronic devices, which requires charge-state control and integration into vertical heterostructures.

2.
Phys Rev Lett ; 129(17): 173603, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36332262

ABSTRACT

Tin-vacancy centers in diamond are promising spin-photon interfaces owing to their high quantum efficiency, large Debye-Waller factor, and compatibility with photonic nanostructuring. Benchmarking their single-photon indistinguishability is a key challenge for future applications. Here, we report the generation of single photons with 99.7_{-2.5}^{+0.3}% purity and 63(9)% indistinguishability from a resonantly excited tin-vacancy center in a single-mode waveguide. We obtain quantum control of the optical transition with 1.71(1)-ns-long π pulses of 77.1(8)% fidelity and show it is spectrally stable over 100 ms. A modest Purcell enhancement factor of 12 would enhance the indistinguishability to 95%.

3.
Phys Rev Lett ; 124(2): 023602, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004012

ABSTRACT

Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T_{1}>10 ms, and the coherence time, T_{2}^{*} reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.

4.
Sci Adv ; 4(9): eaat6574, 2018 09.
Article in English | MEDLINE | ID: mdl-30202783

ABSTRACT

Magnetic sensing technology has found widespread application in a diverse set of industries including transportation, medicine, and resource exploration. These uses often require highly sensitive instruments to measure the extremely small magnetic fields involved, relying on difficult-to-integrate superconducting quantum interference devices and spin-exchange relaxation-free magnetometers. A potential alternative, nitrogen-vacancy (NV) centers in diamond, has shown great potential as a high-sensitivity and high-resolution magnetic sensor capable of operating in an unshielded, room-temperature environment. Transitioning NV center-based sensors into practical devices, however, is impeded by the need for high-power radio frequency (RF) excitation to manipulate them. We report an advance that combines two different physical phenomena to enable a highly efficient excitation of the NV centers: magnetoelastic drive of ferromagnetic resonance and NV-magnon coupling. Our work demonstrates a new pathway that combine acoustics and magnonics that enables highly energy-efficient and local excitation of NV centers without the need for any external RF excitation and, thus, could lead to completely integrated, on-chip, atomic sensors.

5.
Biomed Microdevices ; 18(2): 38, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27106026

ABSTRACT

EPR (electron paramagnetic resonance) based biological oximetry is a powerful tool that accurately and repeatedly measures tissue oxygen levels. In vivo determination of oxygen in tissues is crucial for the diagnosis and treatment of a number of diseases. Here, we report the first successful fabrication and remarkable properties of nanofiber sensors for EPR-oximetry applications. Lithium octa-n-butoxynaphthalocyanine (LiNc- BuO), an excellent paramagnetic oxygen sensor, was successfully encapsulated in 300-500 nm diameter fibers consisting of a core of polydimethylsiloxane (PDMS) and a shell of polycaprolactone (PCL) by electrospinning. This core-shell nanosensor (LiNc-BuO-PDMS-PCL) shows a linear dependence of linewidth versus oxygen partial pressure (pO2). The nanofiber sensors have response and recovery times of 0.35 s and 0.55 s, respectively, these response and recovery times are ~12 times and ~218 times faster than those previously reported for PDMS-LiNc-BuO chip sensors. This greater responsiveness is likely due to the high porosity and excellent oxygen permeability of the nanofibers. Electrospinning of the structurally flexible PDMS enabled the fabrication of fibers having tailored spin densities. Core-shell encapsulation ensures the non-exposure of embedded LiNc-BuO and mitigates potential biocompatibility concerns. In vitro evaluation of the fiber performed under exposure to cultured cells showed that it is both stable and biocompatible. The unique combination of biocompatibility due to the PCL 'shell,' the excellent oxygen transparency of the PDMS core, and the excellent oxygen-sensing properties of LiNc-BuO makes LiNc-BuO-PDMS-PCL platform promising for long-term oximetry and repetitive oxygen measurements in both biological systems and clinical applications.


Subject(s)
Magnetic Phenomena , Nanofibers/chemistry , Oximetry/instrumentation , Animals , CHO Cells , Cricetinae , Cricetulus , Dimethylpolysiloxanes/chemistry , Materials Testing , Oxygen/analysis , Polyesters/chemistry , Porphyrins/chemistry , Pressure , Time Factors
6.
Nature ; 509(7500): 345-8, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24805234

ABSTRACT

Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons. But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics and the flux limitations of ultrafast X-ray sources. Such a situation exists for archetypal polypyridyl iron complexes, such as [Fe(2,2'-bipyridine)3](2+), where the excited-state charge and spin dynamics involved in the transition from a low- to a high-spin state (spin crossover) have long been a source of interest and controversy. Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)3](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate that these capabilities will make our method a valuable tool for mapping in unprecedented detail the fundamental electronic excited-state dynamics that underpin many useful light-triggered molecular phenomena involving 3d transition metal complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...