Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomicrofluidics ; 7(2): 24104, 2013.
Article in English | MEDLINE | ID: mdl-24404009

ABSTRACT

In this work, we conduct a computational study on the loading of cryoprotective agents into cells in preparation for cryopreservation. The advantages of microfluidics in cryopreserving cells include control of fluid flow parameters for reliable cryoprotectant loading and reproducible streamlined processing of samples. A 0.25 m long, three inlet T-junction microchannel serves as an idealized environment for this process. The flow field and concentration distribution are determined from a computational fluid dynamics study and cells are tracked as inert particles in a Lagrangian frame. These particles are not confined to streamlines but can migrate laterally due to the Segre-Sildeberg effect for particles in a shear flow. During this tracking, the local concentration field surrounding the cell is monitored. This data are used as input into the Kedem-Katchalsky equations to numerically study passive solute transport across the cell membrane. As a result of the laminar flow, each cell has a unique pathline in the flow field resulting in different residence times and a unique external concentration field along its path. However, in most previous studies, the effect of a spatially varying concentration field on the transport across the cell membrane is ignored. The dynamics of this process are investigated for a population of cells released from the inlet. Using dimensional analysis, we find a governing parameter α, which is the ratio of the time scale for membrane transport to the average residence time in the channel. For [Formula: see text], cryoprotectant loading is completed to within 5% of the target concentration for all of the cells. However, for [Formula: see text], we find the population of cells does not achieve complete loading and there is a distribution of intracellular cryoprotective agent concentration amongst the population. Further increasing α beyond a value of 2 leads to negligible cryoprotectant loading. These simulations on populations of cells may lead to improved microfluidic cryopreservation protocols where more consistent cryoprotective agent loading and freezing can be achieved, thus increasing cell survival.

2.
Insect Biochem Mol Biol ; 30(8-9): 839-45, 2000.
Article in English | MEDLINE | ID: mdl-10876128

ABSTRACT

The Methoprene-tolerant (Met) gene product in Drosophila melanogaster facilitates the action of juvenile hormone (JH) and JH analog insecticides. Previous work resulted in the cloning and identification of the gene as a member of the bHLH-PAS family of transcriptional regulators. A Met(+) cDNA was expressed in Escherichia coli, and polyclonal antibody was prepared against the purified protein. A single band on a Western blot at the expected size of 79kD was detected in extracts from Met(+) larvae but not from Met(27) null mutant larvae, demonstrating the antibody specificity. Antibody detected MET in all stages of D. melanogaster development and showed tissue specificity of its expression. MET is present in all cells of early embryos but dissipates during gastrulation. In larvae it is present in larval fat body, certain imaginal cells, and immature salivary glands. In pupae it persists in fat body cells and imaginal cells, including abdominal histoblast cells. In adult females MET is present in ovarian follicle cells and spermathecae; in adult males it is present in male accessory gland and ejaculatory duct cells. In all of these tissues MET is found exclusively in the nucleus. Some of these tissues are known JH target tissues but others are not, suggesting either the presence of novel JH target tissues or another function for MET.


Subject(s)
Drosophila melanogaster/metabolism , Helix-Loop-Helix Motifs , Insect Proteins/metabolism , Insecticides , Methoprene , Transcription Factors/metabolism , Animals , Antibody Specificity , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Genes, Insect , Insect Proteins/immunology , Insecticide Resistance , Intracellular Fluid/metabolism , Larva/metabolism , Male , Pupa/metabolism , Tissue Distribution , Transcription Factors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...