Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(6): 3419-3432, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38426934

ABSTRACT

Betacoronaviruses are a genus within the Coronaviridae family of RNA viruses. They are capable of infecting vertebrates and causing epidemics as well as global pandemics in humans. Mitigating the threat posed by Betacoronaviruses requires an understanding of their molecular diversity. The development of novel antivirals hinges on understanding the key regulatory elements within the viral RNA genomes, in particular the 5'-proximal region, which is pivotal for viral protein synthesis. Using a combination of cryo-electron microscopy, atomic force microscopy, chemical probing, and computational modeling, we determined the structures of 5'-proximal regions in RNA genomes of Betacoronaviruses from four subgenera: OC43-CoV, SARS-CoV-2, MERS-CoV, and Rousettus bat-CoV. We obtained cryo-electron microscopy maps and determined atomic-resolution models for the stem-loop-5 (SL5) region at the translation start site and found that despite low sequence similarity and variable length of the helical elements it exhibits a remarkable structural conservation. Atomic force microscopy imaging revealed a common domain organization and a dynamic arrangement of structural elements connected with flexible linkers across all four Betacoronavirus subgenera. Together, these results reveal common features of a critical regulatory region shared between different Betacoronavirus RNA genomes, which may allow targeting of these RNAs by broad-spectrum antiviral therapeutics.


Subject(s)
Betacoronavirus , RNA, Viral , Betacoronavirus/genetics , Cryoelectron Microscopy , Genome, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/ultrastructure , SARS-CoV-2/genetics
2.
Nucleic Acids Res ; 52(D1): D239-D244, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38015436

ABSTRACT

The MODOMICS database was updated with recent data and now includes new data types related to RNA modifications. Changes to the database include an expanded modification catalog, encompassing both natural and synthetic residues identified in RNA structures. This addition aids in representing RNA sequences from the RCSB PDB database more effectively. To manage the increased number of modifications, adjustments to the nomenclature system were made. Updates in the RNA sequences section include the addition of new sequences and the reintroduction of sequence alignments for tRNAs and rRNAs. The protein section was updated and connected to structures from the RCSB PDB database and predictions by AlphaFold. MODOMICS now includes a data annotation system, with 'Evidence' and 'Estimated Reliability' features, offering clarity on data support and accuracy. This system is open to all MODOMICS entries, enhancing the accuracy of RNA modification data representation. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.


Subject(s)
Databases, Nucleic Acid , RNA , Databases, Protein , RNA/chemistry , RNA/genetics , Internet , Sequence Analysis, RNA , User-Computer Interface
3.
Nucleic Acids Res ; 50(D1): D231-D235, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34893873

ABSTRACT

The MODOMICS database has been, since 2006, a manually curated and centralized resource, storing and distributing comprehensive information about modified ribonucleosides. Originally, it only contained data on the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. Over the years, prompted by the accumulation of new knowledge and new types of data, it has been updated with new information and functionalities. In this new release, we have created a catalog of RNA modifications linked to human diseases, e.g., due to mutations in genes encoding modification enzymes. MODOMICS has been linked extensively to RCSB Protein Data Bank, and sequences of experimentally determined RNA structures with modified residues have been added. This expansion was accompanied by including nucleotide 5'-monophosphate residues. We redesigned the web interface and upgraded the database backend. In addition, a search engine for chemically similar modified residues has been included that can be queried by SMILES codes or by drawing chemical molecules. Finally, previously available datasets of modified residues, biosynthetic pathways, and RNA-modifying enzymes have been updated. Overall, we provide users with a new, enhanced, and restyled tool for research on RNA modification. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.


Subject(s)
Databases, Nucleic Acid , Enzymes/genetics , RNA/genetics , Ribonucleosides/genetics , User-Computer Interface , Base Sequence , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Computer Graphics , Databases, Protein , Datasets as Topic , Enzymes/metabolism , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology , Hematologic Diseases/genetics , Hematologic Diseases/metabolism , Hematologic Diseases/pathology , Humans , Internet , Mental Disorders/genetics , Mental Disorders/metabolism , Mental Disorders/pathology , Musculoskeletal Diseases/genetics , Musculoskeletal Diseases/metabolism , Musculoskeletal Diseases/pathology , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , RNA/metabolism , RNA Processing, Post-Transcriptional , Ribonucleosides/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
4.
Article in English | MEDLINE | ID: mdl-30397098

ABSTRACT

The 5'-cap structure, characteristic for RNA polymerase II-transcribed RNAs, plays important roles in RNA metabolism. In humans, RNA cap formation includes post-transcriptional modification of the first transcribed nucleotide by RNA cap1 methyltransferase (CMTr1). Here, we report that CMTr1 activity is hindered towards RNA substrates with highly structured 5' termini. We found that CMTr1 binds ATP-dependent RNA DHX15 helicase and that this interaction, mediated by the G-patch domain of CMTr1, has an advantageous effect on CMTr1 activity towards highly structured RNA substrates. The effect of DHX15 helicase activity is consistent with the strength of the secondary structure that has to be removed for CMTr1 to access the 5'-terminal residues in a single-stranded conformation. This is, to our knowledge, the first demonstration of the involvement of DHX15 in post-transcriptional RNA modification, and the first example of a molecular process in which DHX15 directly affects the activity of another enzyme. Our findings suggest a new mechanism underlying the regulatory role of DHX15 in the RNA capping process. RNAs with highly structured 5' termini constitute a significant fraction of the human transcriptome. Hence, CMTr1-DHX15 cooperation is likely to be important for the metabolism of RNA polymerase II-transcribed RNAs.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.


Subject(s)
Methyltransferases/metabolism , RNA Helicases/metabolism , Humans , Methylation , RNA/metabolism
5.
Eur J Med Chem ; 146: 60-67, 2018 Feb 25.
Article in English | MEDLINE | ID: mdl-29396363

ABSTRACT

In erythromycin-resistant bacteria, the N6 position of A2058 in 23S rRNA is mono- or dimethylated by Erm family methyltransferases. This modification results in cross-resistance to macrolides, lincosamides and streptogramin B. Most inhibitors of Erm methyltransferases developed up-to-date target the cofactor-binding pocket, resulting in a lack of selectivity whereas inhibitors that bind the substrate-binding pocket demonstrate low in vitro activity. In this study, a molecular docking approach followed by biochemical screening was applied to search for inhibitors targeting both cofactor- and substrate-binding pockets of ErmC' methyltransferase. Based on the results of the molecular docking-based virtual screening of the clean-leads subset of the ZINC database, 29 compounds were chosen for experimental verification. Among them inhibitor 28 (ZINC code 32747906), with an IC50 of 100 µM, decreased the minimal inhibitory concentration of erythromycin in the Escherichia coli strain overexpressing ErmC'. Docking analysis of 28 to the ErmC' structure and the competitive ligand binding assay revealed a non-competitive model of inhibition. Inhibitor 28 served as a template for similarity-based virtual screening, which resulted in the identification of two derivatives 3s (ZINC code 62022572) and 4s (ZINC code 49032257) with an IC50 of 116 µM and 110 µM, respectively. Our results provide a basis for the development of inhibitors against the Erm-family of enzymes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Lincosamides/pharmacology , Macrolides/pharmacology , Methyltransferases/antagonists & inhibitors , Streptogramin Group B/pharmacology , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Lincosamides/chemistry , Macrolides/chemistry , Methyltransferases/metabolism , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Streptogramin Group B/chemistry , Structure-Activity Relationship
6.
Nucleic Acids Res ; 46(D1): D303-D307, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29106616

ABSTRACT

MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. In the current database version, we included the following new features and data: extended mass spectrometry and liquid chromatography data for modified nucleosides; links between human tRNA sequences and MINTbase - a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments; new, machine-friendly system of unified abbreviations for modified nucleoside names; sets of modified tRNA sequences for two bacterial species, updated collection of mammalian tRNA modifications, 19 newly identified modified ribonucleosides and 66 functionally characterized proteins involved in RNA modification. Data from MODOMICS have been linked to the RNAcentral database of RNA sequences. MODOMICS is available at http://modomics.genesilico.pl.


Subject(s)
Databases, Genetic , RNA/chemistry , RNA/metabolism , Ribonucleosides/chemistry , Ribonucleosides/metabolism , Chromatography, Liquid , Humans , Mass Spectrometry , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Terminology as Topic
7.
Genome Biol Evol ; 8(2): 426-38, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26782934

ABSTRACT

The genomes of intracellular symbiotic or pathogenic bacteria, such as of Buchnera, Mycoplasma, and Rickettsia, are typically smaller compared with their free-living counterparts. Here we showed that noncoding RNA (ncRNA) families, which are conserved in free-living bacteria, frequently could not be detected by computational methods in the small genomes. Statistical tests demonstrated that their absence is not an artifact of low GC content or small deletions in these small genomes, and thus it was indicative of an independent loss of ncRNAs in different endosymbiotic lineages. By analyzing the synteny (conservation of gene order) between the reduced and nonreduced genomes, we revealed instances of protein-coding genes that were preserved in the reduced genomes but lost cis-regulatory elements. We found that the loss of cis-regulatory ncRNA sequences, which regulate the expression of cognate protein-coding genes, is characterized by the reduction of secondary structure formation propensity, GC content, and length of the corresponding genomic regions.


Subject(s)
Buchnera/genetics , Genome, Bacterial , Mycoplasma/genetics , RNA, Long Noncoding/genetics , Rickettsia/genetics , Sequence Deletion , Base Composition , Conserved Sequence , Open Reading Frames , Symbiosis
8.
RNA Biol ; 11(5): 522-36, 2014.
Article in English | MEDLINE | ID: mdl-24785264

ABSTRACT

In addition to mRNAs whose primary function is transmission of genetic information from DNA to proteins, numerous other classes of RNA molecules exist, which are involved in a variety of functions, such as catalyzing biochemical reactions or performing regulatory roles. In analogy to proteins, the function of RNAs depends on their structure and dynamics, which are largely determined by the ribonucleotide sequence. Experimental determination of high-resolution RNA structures is both laborious and difficult, and therefore, the majority of known RNAs remain structurally uncharacterized. To address this problem, computational structure prediction methods were developed that simulate either the physical process of RNA structure formation ("Greek science" approach) or utilize information derived from known structures of other RNA molecules ("Babylonian science" approach). All computational methods suffer from various limitations that make them generally unreliable for structure prediction of long RNA sequences. However, in many cases, the limitations of computational and experimental methods can be overcome by combining these two complementary approaches with each other. In this work, we review computational approaches for RNA structure prediction, with emphasis on implementations (particular programs) that can utilize restraints derived from experimental analyses. We also list experimental approaches, whose results can be relatively easily used by computational methods. Finally, we describe case studies where computational and experimental analyses were successfully combined to determine RNA structures that would remain out of reach for each of these approaches applied separately.


Subject(s)
Models, Molecular , Nucleic Acid Conformation , RNA/chemistry , Algorithms , Base Pairing , Computational Biology/methods , Evolution, Molecular , RNA/genetics , Solvents , Thermodynamics
9.
Methods Enzymol ; 535: 167-77, 2014.
Article in English | MEDLINE | ID: mdl-24377924

ABSTRACT

Microscopical analyses of endocytic trafficking require tools for efficient detection of internalized cargo. Due to the lack of suitable reagents and limitations related to its biological properties, visualization of platelet-derived growth factor (PDGF) by microscopy remained a challenge. To overcome these restrictions, we generated a biologically active PDGF labeled with up to five biotins on cleavable linkers. Subsequently, we stimulated cells with such ligand followed by removal of extracellular biotins. PDGF captured in endocytic vesicles was successfully detected with antibiotin antibodies with parallel detection of PDGF receptor, as well as other markers of endocytic compartments. Labeled PDGF was successfully validated and can be utilized in various microscopical techniques.


Subject(s)
Endocytosis , Platelet-Derived Growth Factor/metabolism , Biotinylation , Cell Line , Humans , Microscopy, Fluorescence , Platelet-Derived Growth Factor/chemistry , Receptors, Platelet-Derived Growth Factor/metabolism , Staining and Labeling
10.
Nat Commun ; 5: 3004, 2014.
Article in English | MEDLINE | ID: mdl-24402442

ABSTRACT

The 5' cap of human messenger RNA contains 2'-O-methylation of the first and often second transcribed nucleotide that is important for its processing, translation and stability. Human enzymes that methylate these nucleotides, termed CMTr1 and CMTr2, respectively, have recently been identified. However, the structures of these enzymes and their mechanisms of action remain unknown. In the present study, we solve the crystal structures of the active CMTr1 catalytic domain in complex with a methyl group donor and a capped oligoribonucleotide, thereby revealing the mechanism of specific recognition of capped RNA. This mechanism differs significantly from viral enzymes, thus providing a framework for their specific targeting. Based on the crystal structure of CMTr1, a comparative model of the CMTr2 catalytic domain is generated. This model, together with mutational analysis, leads to the identification of residues involved in RNA and methyl group donor binding.


Subject(s)
Methyltransferases/metabolism , RNA Caps/metabolism , RNA, Messenger/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Protein Structure, Tertiary , RNA Processing, Post-Transcriptional
11.
RNA Biol ; 11(12): 1597-607, 2014.
Article in English | MEDLINE | ID: mdl-25626080

ABSTRACT

In eukaryotes and viruses that infect them, the 5' end of mRNA molecules, and also many other functionally important RNAs, are modified to form a so-called cap structure that is important for interactions of these RNAs with many nuclear and cytoplasmic proteins. The RNA cap has multiple roles in gene expression, including enhancement of RNA stability, splicing, nucleocytoplasmic transport, and translation initiation. Apart from guanosine addition to the 5' end in the most typical cap structure common to transcripts produced by RNA polymerase II (in particular mRNA), essentially all cap modifications are due to methylation. The complexity of the cap structure and its formation can range from just a single methylation of the unprocessed 5' end of the primary transcript, as in mammalian U6 and 7SK, mouse B2, and plant U3 RNAs, to an elaborate m(7)Gpppm(6,6)AmpAmpCmpm(3)Um structure at the 5' end of processed RNA in trypanosomes, which are formed by as many as 8 methylation reactions. While all enzymes responsible for methylation of the cap structure characterized to date were found to belong to the same evolutionarily related and structurally similar Rossmann Fold Methyltransferase superfamily, that uses the same methyl group donor, S-adenosylmethionine; the enzymes also exhibit interesting differences that are responsible for their distinct functions. This review focuses on the evolutionary classification of enzymes responsible for cap methylation in RNA, with a focus on the sequence relationships and structural similarities and dissimilarities that provide the basis for understanding the mechanism of biosynthesis of different caps in cellular and viral RNAs. Particular attention is paid to the similarities and differences between methyltransferases from human cells and from human pathogens that may be helpful in the development of antiviral and antiparasitic drugs.


Subject(s)
RNA Caps/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , RNA, Protozoan/metabolism , RNA, Viral/metabolism , Animals , Humans , Methylation , Mice , Models, Molecular , RNA Caps/chemistry , RNA, Messenger/chemistry , RNA, Protozoan/chemistry , RNA, Viral/chemistry , S-Adenosylmethionine/metabolism , Trypanosoma/enzymology , Trypanosoma/genetics , Viruses/enzymology , Viruses/genetics , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
12.
RNA ; 19(10): 1341-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23980204

ABSTRACT

Prokaryotic ribosomal protein genes are typically grouped within highly conserved operons. In many cases, one or more of the encoded proteins not only bind to a specific site in the ribosomal RNA, but also to a motif localized within their own mRNA, and thereby regulate expression of the operon. In this study, we computationally predicted an RNA motif present in many bacterial phyla within the 5' untranslated region of operons encoding ribosomal proteins S6 and S18. We demonstrated that the S6:S18 complex binds to this motif, which we hereafter refer to as the S6:S18 complex-binding motif (S6S18CBM). This motif is a conserved CCG sequence presented in a bulge flanked by a stem and a hairpin structure. A similar structure containing a CCG trinucleotide forms the S6:S18 complex binding site in 16S ribosomal RNA. We have constructed a 3D structural model of a S6:S18 complex with S6S18CBM, which suggests that the CCG trinucleotide in a specific structural context may be specifically recognized by the S18 protein. This prediction was supported by site-directed mutagenesis of both RNA and protein components. These results provide a molecular basis for understanding protein-RNA recognition and suggest that the S6S18CBM is involved in an auto-regulatory mechanism.


Subject(s)
Bacterial Proteins/metabolism , Nucleic Acid Conformation , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , RNA, Ribosomal/metabolism , Ribosomal Protein S6/metabolism , Ribosomal Proteins/metabolism , 5' Untranslated Regions/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Pairing , Base Sequence , Binding Sites , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , Escherichia coli/metabolism , Models, Molecular , Molecular Sequence Data , Operon/genetics , Protein Binding , Protein Structure, Tertiary , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , Ribosomal Protein S6/chemistry , Ribosomal Protein S6/genetics , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Ribosomes/chemistry , Ribosomes/genetics , Ribosomes/metabolism , Sequence Homology, Nucleic Acid , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
13.
Nucleic Acids Res ; 41(Database issue): D262-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23118484

ABSTRACT

MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, RNA-modifying enzymes and location of modified residues in RNA sequences. In the current database version, accessible at http://modomics.genesilico.pl, we included new features: a census of human and yeast snoRNAs involved in RNA-guided RNA modification, a new section covering the 5'-end capping process, and a catalogue of 'building blocks' for chemical synthesis of a large variety of modified nucleosides. The MODOMICS collections of RNA modifications, RNA-modifying enzymes and modified RNAs have been also updated. A number of newly identified modified ribonucleosides and more than one hundred functionally and structurally characterized proteins from various organisms have been added. In the RNA sequences section, snRNAs and snoRNAs with experimentally mapped modified nucleosides have been added and the current collection of rRNA and tRNA sequences has been substantially enlarged. To facilitate literature searches, each record in MODOMICS has been cross-referenced to other databases and to selected key publications. New options for database searching and querying have been implemented, including a BLAST search of protein sequences and a PARALIGN search of the collected nucleic acid sequences.


Subject(s)
Databases, Nucleic Acid , RNA Processing, Post-Transcriptional , RNA/chemistry , RNA/metabolism , Enzymes/chemistry , Enzymes/metabolism , Humans , Internet , RNA/biosynthesis , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/metabolism , RNA, Small Nucleolar/chemistry , RNA, Small Nucleolar/metabolism , Sequence Analysis, RNA
14.
Nucleic Acids Res ; 39(11): 4756-68, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21310715

ABSTRACT

The 5' cap of human messenger RNA consists of an inverted 7-methylguanosine linked to the first transcribed nucleotide by a unique 5'-5' triphosphate bond followed by 2'-O-ribose methylation of the first and often the second transcribed nucleotides, likely serving to modify efficiency of transcript processing, translation and stability. We report the validation of a human enzyme that methylates the ribose of the second transcribed nucleotide encoded by FTSJD1, henceforth renamed HMTR2 to reflect function. Purified recombinant hMTr2 protein transfers a methyl group from S-adenosylmethionine to the 2'-O-ribose of the second nucleotide of messenger RNA and small nuclear RNA. Neither N(7) methylation of the guanosine cap nor 2'-O-ribose methylation of the first transcribed nucleotide are required for hMTr2, but the presence of cap1 methylation increases hMTr2 activity. The hMTr2 protein is distributed throughout the nucleus and cytosol, in contrast to the nuclear hMTr1. The details of how and why specific transcripts undergo modification with these ribose methylations remains to be elucidated. The 2'-O-ribose RNA cap methyltransferases are present in varying combinations in most eukaryotic and many viral genomes. With the capping enzymes in hand their biological purpose can be ascertained.


Subject(s)
Methyltransferases/metabolism , RNA Caps/metabolism , Evolution, Molecular , Humans , Methylation , Methyltransferases/chemistry , Methyltransferases/genetics , Multigene Family , Nuclear Proteins/analysis , Protein Structure, Tertiary , RNA Caps/chemistry , RNA, Small Nuclear/metabolism , Recombinant Proteins/metabolism
15.
J Neurosci ; 30(14): 4957-69, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20371816

ABSTRACT

beta-Catenin, together with LEF1/TCF transcription factors, activates genes involved in the proliferation and differentiation of neuronal precursor cells. In mature neurons, beta-catenin participates in dendritogenesis and synaptic function as a component of the cadherin cell adhesion complex. However, the transcriptional activity of beta-catenin in these cells remains elusive. In the present study, we found that in the adult mouse brain, beta-catenin and LEF1 accumulate in the nuclei of neurons specifically in the thalamus. The particular electrophysiological properties of thalamic neurons depend on T-type calcium channels. Cav3.1 is the predominant T-type channel subunit in the thalamus, and we hypothesized that the Cacna1g gene encoding Cav3.1 is a target of the LEF1/beta-catenin complex. We demonstrated that the expression of Cacna1g is high in the thalamus and is further increased in thalamic neurons treated in vitro with LiCl or WNT3A, activators of beta-catenin. Luciferase reporter assays confirmed that the Cacna1G promoter is activated by LEF1 and beta-catenin, and footprinting analysis revealed four LEF1 binding sites in the proximal region of this promoter. Chromatin immunoprecipitation demonstrated that the Cacna1g proximal promoter is occupied by beta-catenin in vivo in the thalamus, but not in the hippocampus. Moreover, WNT3A stimulation enhanced T-type current in cultured thalamic neurons. Together, our data indicate that the LEF1/beta-catenin complex regulates transcription of Cacna1g and uncover a novel function for beta-catenin in mature neurons. We propose that beta-catenin contributes to neuronal excitability not only by a local action at the synapse but also by activating gene expression in thalamic neurons.


Subject(s)
Calcium Channels, T-Type/genetics , Lymphoid Enhancer-Binding Factor 1/physiology , Neurons/physiology , Thalamus/physiology , Transcriptional Activation/physiology , beta Catenin/physiology , Age Factors , Animals , Calcium Channels, T-Type/biosynthesis , Calcium Channels, T-Type/chemistry , Cells, Cultured , Female , HeLa Cells , Humans , Lymphoid Enhancer-Binding Factor 1/chemistry , Male , Mice , Rats , Synapses/chemistry , Synapses/genetics , Synapses/metabolism , beta Catenin/chemistry
16.
Nucleic Acids Res ; 38(5): 1652-63, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20007606

ABSTRACT

The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase RlmN that methylates the C-2 position. Database searches with the Cfr sequence have revealed a large group of closely related sequences from all domains of life that contain the conserved CX(3)CX(2)C motif characteristic of radical S-adenosyl-l-methionine (SAM) enzymes. Phylogenetic analysis of the Cfr/RlmN family suggests that the RlmN subfamily is likely the ancestral form, whereas the Cfr subfamily arose via duplication and horizontal gene transfer. A structural model of Cfr has been calculated and used as a guide for alanine mutagenesis studies that corroborate the model-based predictions of a 4Fe-4S cluster, a SAM molecule coordinated to the iron-sulfur cluster (SAM1) and a SAM molecule that is the putative methyl group donor (SAM2). All mutations at predicted functional sites affect Cfr activity significantly as assayed by antibiotic susceptibility testing and primer extension analysis. The investigation has identified essential amino acids and Cfr variants with altered reaction mechanisms and represents a first step towards understanding the structural basis of Cfr activity.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/classification , Methyltransferases/chemistry , Methyltransferases/classification , RNA, Ribosomal, 23S/metabolism , S-Adenosylmethionine/chemistry , Amino Acid Sequence , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Evolution, Molecular , Ligands , Methylation , Methyltransferases/metabolism , Models, Molecular , Molecular Sequence Data , Mutagenesis , Phylogeny , S-Adenosylmethionine/metabolism , Sequence Homology, Amino Acid
17.
Mol Microbiol ; 72(5): 1147-58, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19400805

ABSTRACT

The rRNAs of Escherichia coli contain four 2'-O-methylated nucleotides. Similar to other bacterial species and in contrast with Archaea and Eukaryota, the E. coli rRNA modifications are catalysed by specific methyltransferases that find their nucleotide targets without being guided by small complementary RNAs. We show here that the ygdE gene encodes the methyltransferase that catalyses 2'-O-methylation at nucleotide C2498 in the peptidyl transferase loop of E. coli 23S rRNA. Analyses of rRNAs using MALDI mass spectrometry showed that inactivation of the ygdE gene leads to loss of methylation at nucleotide C2498. The loss of ygdE function causes a slight reduction in bacterial fitness. Methylation at C2498 was restored by complementing the knock-out strain with a recombinant copy of ygdE. The recombinant YgdE methyltransferase modifies C2498 in naked 23S rRNA, but not in assembled 50S subunits or ribosomes. Nucleotide C2498 is situated within a highly conserved and heavily modified rRNA sequence, and YgdE's activity is influenced by other modification enzymes that target this region. Phylogenetically, YgdE is placed in the cluster of orthologous groups COG2933 together with S-adenosylmethionine-dependent, Rossmann-fold methyltransferases such as the archaeal and eukaryotic RNA-guided fibrillarins. The ygdE gene has been redesignated rlmM for rRNA large subunit methyltransferase M.


Subject(s)
Escherichia coli/enzymology , Methyltransferases/metabolism , RNA, Bacterial/metabolism , RNA, Ribosomal, 23S/metabolism , Amino Acid Sequence , Cloning, Molecular , Conserved Sequence , Escherichia coli/genetics , Escherichia coli/growth & development , Gene Knockout Techniques , Genes, Bacterial , Genetic Complementation Test , Methylation , Methyltransferases/genetics , Molecular Sequence Data , Nucleic Acid Conformation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity
18.
Protein Sci ; 18(3): 637-49, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19241373

ABSTRACT

Proteins from the Rep family of DNA replication initiators exist mainly as dimers, but only monomers can initiate DNA replication by interaction with the replication origin (ori). In this study, we investigated both the activation (monomerization) and the degradation of the broad-host-range plasmid RK2 replication initiation protein TrfA, which we found to be a member of a class of DNA replication initiators containing winged helix (WH) domains. Our in vivo and in vitro experiments demonstrated that the ClpX-dependent activation of TrfA leading to replicationally active protein monomers and mutations affecting TrfA dimer formation, result in the inhibition of TrfA protein degradation by the ClpXP proteolytic system. These data revealed that the TrfA monomers and dimers are degraded at substantially different rates. Our data also show that the plasmid replication initiator activity and stability in E. coli cells are affected by ClpXP system only when the protein sustains dimeric form.


Subject(s)
Adenosine Triphosphatases/metabolism , Endopeptidase Clp/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Molecular Chaperones/metabolism , ATPases Associated with Diverse Cellular Activities , Amino Acid Substitution , DNA Replication , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Models, Molecular , Protein Binding , Protein Multimerization/genetics , Protein Stability
19.
Nucleic Acids Res ; 37(Database issue): D118-21, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18854352

ABSTRACT

MODOMICS, a database devoted to the systems biology of RNA modification, has been subjected to substantial improvements. It provides comprehensive information on the chemical structure of modified nucleosides, pathways of their biosynthesis, sequences of RNAs containing these modifications and RNA-modifying enzymes. MODOMICS also provides cross-references to other databases and to literature. In addition to the previously available manually curated tRNA sequences from a few model organisms, we have now included additional tRNAs and rRNAs, and all RNAs with 3D structures in the Nucleic Acid Database, in which modified nucleosides are present. In total, 3460 modified bases in RNA sequences of different organisms have been annotated. New RNA-modifying enzymes have been also added. The current collection of enzymes includes mainly proteins for the model organisms Escherichia coli and Saccharomyces cerevisiae, and is currently being expanded to include proteins from other organisms, in particular Archaea and Homo sapiens. For enzymes with known structures, links are provided to the corresponding Protein Data Bank entries, while for many others homology models have been created. Many new options for database searching and querying have been included. MODOMICS can be accessed at http://genesilico.pl/modomics.


Subject(s)
Databases, Nucleic Acid , RNA/chemistry , RNA/metabolism , Base Sequence , Escherichia coli/enzymology , RNA/biosynthesis , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism , Saccharomyces cerevisiae/enzymology
20.
J Mol Biol ; 383(3): 652-66, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-18789337

ABSTRACT

Methylation is the most common RNA modification in the three domains of life. Transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to specific atoms of RNA nucleotides is catalyzed by methyltransferase (MTase) enzymes. The rRNA MTase RlmI (rRNA large subunit methyltransferase gene I; previously known as YccW) specifically modifies Escherichia coli 23S rRNA at nucleotide C1962 to form 5-methylcytosine. Here, we report the crystal structure of RlmI refined at 2 A to a final R-factor of 0.194 (R(free)=0.242). The RlmI molecule comprises three domains: the N-terminal PUA domain; the central domain, which resembles a domain previously found in RNA:5-methyluridine MTases; and the C-terminal catalytic domain, which contains the AdoMet-binding site. The central and C-terminal domains are linked by a beta-hairpin structure that has previously been observed in several MTases acting on nucleic acids or proteins. Based on bioinformatics analyses, we propose a model for the RlmI-AdoMet-RNA complex. Comparative structural analyses of RlmI and its homologs provide insight into the potential function of several structures that have been solved by structural genomics groups and furthermore indicate that the evolutionary paths of RNA and DNA 5-methyluridine and 5-methylcytosine MTases have been closely intertwined.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Methyltransferases/chemistry , Protein Structure, Tertiary , RNA, Ribosomal, 23S/metabolism , Amino Acid Sequence , Catalytic Domain , Coenzymes/chemistry , Coenzymes/metabolism , Crystallography, X-Ray , Escherichia coli Proteins/classification , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Evolution, Molecular , Methyltransferases/classification , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Binding , Sequence Alignment , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...