Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Syst Biol ; 3: 10, 2009 Jan 20.
Article in English | MEDLINE | ID: mdl-19154595

ABSTRACT

BACKGROUND: Studies of cellular signaling indicate that signal transduction pathways combine to form large networks of interactions. Viewing protein-protein and ligand-protein interactions as graphs (networks), where biomolecules are represented as nodes and their interactions are represented as links, is a promising approach for integrating experimental results from different sources to achieve a systematic understanding of the molecular mechanisms driving cell phenotype. The emergence of large-scale signaling networks provides an opportunity for topological statistical analysis while visualization of such networks represents a challenge. RESULTS: SNAVI is Windows-based desktop application that implements standard network analysis methods to compute the clustering, connectivity distribution, and detection of network motifs, as well as provides means to visualize networks and network motifs. SNAVI is capable of generating linked web pages from network datasets loaded in text format. SNAVI can also create networks from lists of gene or protein names. CONCLUSION: SNAVI is a useful tool for analyzing, visualizing and sharing cell signaling data. SNAVI is open source free software. The installation may be downloaded from: http://snavi.googlecode.com. The source code can be accessed from: http://snavi.googlecode.com/svn/trunk.


Subject(s)
Signal Transduction , Software , Gene Regulatory Networks , Humans , Metabolic Networks and Pathways , Systems Biology , User-Computer Interface
2.
Biophys J ; 94(7): 2566-79, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18178648

ABSTRACT

Representation of intracellular signaling networks as directed graphs allows for the identification of regulatory motifs. Regulatory motifs are groups of nodes with the same connectivity structure, capable of processing information. The bifan motif, made of two source nodes directly crossregulating two target nodes, is an overrepresented motif in a mammalian cell signaling network and in transcriptional networks. One example of a bifan is the two MAP-kinases, p38, and JNK that phosphorylate and activate the two transcription factors ATF2 and Elk-1. We have used a system of coupled ordinary differential equations to analyze the regulatory capability of this bifan motif by itself, and when it interacts with other motifs such as positive and negative feedback loops. Our results indicate that bifans provide temporal regulation of signal propagation and act as signal sorters, filters, and synchronizers. Bifans that have OR gate configurations show rapid responses whereas AND gate bifans can introduce delays and allow prolongation of signal outputs. Bifans that have AND gates can filter noisy signal inputs. The p38/JNK-ATF2/Elk-1bifan synchronizes the output of activated transcription factors. Synchronization is a robust property of bifans and is exhibited even when the bifan is adjacent to a positive feedback loop. The presence of the bifan promotes the transcription and translation of the dual specificity protein phosphatase MKP-1 that inhibits p38 and JNK thus enabling a negative feedback loop. These results indicate that bifan motifs in cell signaling networks can contribute to signal processing capability both intrinsically and by enabling the functions of other regulatory motifs.


Subject(s)
Algorithms , Gene Expression Regulation/physiology , Logistic Models , Models, Biological , Multienzyme Complexes/metabolism , Proteome/metabolism , Signal Transduction/physiology , Computer Simulation , Feedback/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...