Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Brain Behav Immun ; 118: 236-251, 2024 May.
Article in English | MEDLINE | ID: mdl-38431238

ABSTRACT

Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.


Subject(s)
Prenatal Exposure Delayed Effects , Raloxifene Hydrochloride , Humans , Young Adult , Rats , Female , Male , Animals , Adult , Raloxifene Hydrochloride/pharmacology , Dopamine/metabolism , Receptors, Estrogen , Selective Estrogen Receptor Modulators/pharmacology , Amphetamine/pharmacology , RNA, Messenger , Behavior, Animal/physiology , Poly I-C/pharmacology , Disease Models, Animal , Mammals/metabolism
2.
J Psychiatr Res ; 160: 204-209, 2023 04.
Article in English | MEDLINE | ID: mdl-36848775

ABSTRACT

The glutamatergic system may be central to the neurobiology and treatment of major depressive disorder (MDD) and psychosis. Despite the success of N-methyl-D-aspartate receptor (NMDAR) antagonists for the treatment of MDD, little is known regarding the expression of these glutamate receptors in MDD. In this study we measured gene expression, via qRT-PCR, of the major NMDAR subunits, in the anterior cingulate cortex (ACC) in MDD subjects with and without psychosis, and non-psychiatric controls. Overall, GRIN2B mRNA was increased in both MDD with (+32%) and without psychosis (+40%) compared to controls along with a trend increase in GRIN1 mRNA in MDD overall (+24%). Furthermore, in MDD with psychosis there was a significant decrease in the GRIN2A:GRIN2B mRNA ratio (-19%). Collectively these results suggest dysfunction of the glutamatergic system at the gene expression level in the ACC in MDD. Increased GRIN2B mRNA in MDD, along with an altered GRIN2A:GRIN2B ratio in psychotic depression, suggests a disruption to NMDAR composition could be present in the ACC in MDD; this could lead to enhanced signalling via GluN2B-containing NMDARs and greater potential for glutamate excitotoxicity in the ACC in MDD. These results support future research into GluN2B antagonist-based treatments for MDD.


Subject(s)
Depressive Disorder, Major , Receptors, N-Methyl-D-Aspartate , Humans , Depression/psychology , Depressive Disorder, Major/genetics , Gene Expression , Gyrus Cinguli/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , RNA, Messenger/metabolism
3.
Pathogens ; 11(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36365032

ABSTRACT

The microbiome has been implicated in the development of metabolic conditions which occur at high rates in people with schizophrenia and related psychoses. This exploratory proof-of-concept study aimed to: (i) characterize the gut microbiota in antipsychotic naïve or quasi-naïve people with first-episode psychosis, and people with established schizophrenia receiving clozapine therapy; (ii) test for microbiome changes following a lifestyle intervention which included diet and exercise education and physical activity. Participants were recruited from the Eastern Suburbs Mental Health Service, Sydney, Australia. Anthropometric, lifestyle and gut microbiota data were collected at baseline and following a 12-week lifestyle intervention. Stool samples underwent 16S rRNA sequencing to analyse microbiota diversity and composition. Seventeen people with established schizophrenia and five people with first-episode psychosis were recruited and matched with 22 age-sex, BMI and ethnicity matched controls from a concurrent study for baseline comparisons. There was no difference in α-diversity between groups at baseline, but microbial composition differed by 21 taxa between the established schizophrenia group and controls. In people with established illness pre-post comparison of α-diversity showed significant increases after the 12-week lifestyle intervention. This pilot study adds to the current literature that detail compositional differences in the gut microbiota of people with schizophrenia compared to those without mental illness and suggests that lifestyle interventions may increase gut microbial diversity in patients with established illness. These results show that microbiome studies are feasible in patients with established schizophrenia and larger studies are warranted to validate microbial signatures and understand the relevance of lifestyle change in the development of metabolic conditions in this population.

4.
Brain Behav Immun ; 105: 149-159, 2022 10.
Article in English | MEDLINE | ID: mdl-35764269

ABSTRACT

Dopamine dysregulation in schizophrenia may be associated with midbrain inflammation. Previously, we found elevated levels of pro-inflammatory cytokine mRNAs in the post-mortem midbrain of people with schizophrenia (46%) but not from unaffected controls (0%) using a brain cohort from Sydney, Australia. Here, we measured cytokine mRNAs and proteins in the midbrain in the Stanley Medical Research Institute (SMRI) array cohort (N = 105). We tested if the proportions of individuals with schizophrenia and with high inflammation can be replicated, and if individuals with bipolar disorder with elevated midbrain cytokines can be identified. mRNA levels of 7 immune transcripts from post-mortem midbrain tissue were measured via RT-PCR and two-step recursive clustering analysis was performed using 4 immune transcripts to define "high and low" inflammatory subgroups. The clustering predictors used were identical to our earlier midbrain study, and included: IL1B, IL6, TNF, and SERPINA3 mRNA levels. 46% of schizophrenia cases (16/35 SCZ), 6% of controls (2/33 CTRL), and 29% of bipolar disorder cases (10/35 BPD) were identified as belonging to the high inflammation (HI) subgroups [χ2 (2) = 13.54, p < 0.001]. When comparing inflammatory subgroups, all four mRNAs were significantly increased in SCZ-HI and BPD-HI compared to low inflammation controls (CTRL-LI) (p < 0.05). Additionally, protein levels of IL-1ß, IL-6, and IL-18 were elevated in SCZ-HI and BPD-HI compared to all other low inflammatory subgroups (all p < 0.05). Surprisingly, TNF-α protein levels were unchanged according to subgroups. In conclusion, we determined that almost half of the individuals with schizophrenia were defined as having high inflammation in the midbrain, replicating our previous findings. Further, we detected close to one-third of those with bipolar disorder to be classified as having high inflammation. Elevations in some pro-inflammatory cytokine mRNAs (IL-1ß and IL-6) were also found at the protein level, whereas TNF mRNA and protein levels were not concordant.


Subject(s)
Bipolar Disorder , Schizophrenia , Cytokines/genetics , Cytokines/metabolism , Humans , Inflammation , Interleukin-6/metabolism , Mesencephalon/metabolism , RNA, Messenger/genetics
5.
J Psychiatr Res ; 147: 203-211, 2022 03.
Article in English | MEDLINE | ID: mdl-35063739

ABSTRACT

Evidence, largely obtained from peripheral studies, suggests that alterations in the kynurenine pathway contribute to the aetiology of depression and disorders involving psychosis. Stimulation of the kynurenine pathway leads to the formation of neuroactive metabolites, including kynurenic acid (predominantly in astrocytes) and quinolinic acid (predominantly in microglia), which are antagonists and agonists of the glutamate NMDA receptor, respectively. In this study, we measured gene expression via qRT-PCR of the main kynurenine pathway enzymes in the anterior cingulate cortex (ACC) in people with major depressive disorder and matched controls. In parallel, we tested for diagnostic differences in gene expression of relevant glial markers. We used total RNA isolated from the ACC from depression subjects with psychosis (n = 12) and without psychosis (n = 12), and non-psychiatric controls (n = 12) provided by the Stanley Medical Research Institute. In the ACC, KYAT1 (KAT I), AADAT (KAT II), and the astrocytic SLC1A2 (EAAT2) mRNAs, were significantly increased in depression, when combining those with and without psychosis. The increased KYAT1 and AADAT mRNA indicates that depression is associated with increased activation of the kynurenic acid arm of the kynurenine pathway in the ACC, suggesting an astrocyte response in depression. Considering EAAT2 and KATs increase astrocytic glutamate uptake and production of the NMDA receptor antagonist kynurenic acid, the observed increases of these markers may relate to changes in glutamatergic signalling in depression. These results suggest dysfunction of the kynurenine pathway in the brain in depression and point to the kynurenine pathway as a possible driver of glutamate dysfunction in depression.


Subject(s)
Depressive Disorder, Major , Psychotic Disorders , Astrocytes/metabolism , Depression , Depressive Disorder, Major/metabolism , Humans , Kynurenic Acid/metabolism , Kynurenine
6.
J Neuroimmunol ; 364: 577813, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35093761

ABSTRACT

Maternal immune activation (MIA) with poly(I:C) is a preclinical paradigm for schizophrenia and autism research. Methodological variations, including poly(I:C) molecular weight, contribute to inconsistencies in behavioural and molecular outcomes. We established in Wistar rats that 4 mg/kg high molecular weight (HMW)-poly(I:C) on GD19 induces maternal sickness, smaller litters and maternal elevations of serum cytokines, including increases in monocyte chemoattractants. In adult offspring, we found that males have higher serum cytokines than females, and MIA did not alter peripheral cytokines in either sex. Our study will contribute to the effective use of the MIA model to elucidate the neurobiology of neurodevelopmental disorders.


Subject(s)
Monocyte Chemoattractant Proteins/immunology , Neurodevelopmental Disorders/immunology , Poly I-C/toxicity , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects/immunology , Animals , Cytokines/blood , Cytokines/immunology , Disease Models, Animal , Female , Male , Poly I-C/immunology , Pregnancy , Rats , Rats, Wistar
7.
Schizophr Res ; 240: 61-70, 2022 02.
Article in English | MEDLINE | ID: mdl-34952289

ABSTRACT

Lower N-methyl-d-aspartate receptor (NMDAR) GluN1 subunit levels and heightened neuroinflammation are found in the cortex in schizophrenia. Since neuroinflammation can lead to changes in NMDAR function, it is possible that these observations are linked in schizophrenia. We aimed to extend our previous studies by measuring molecular indices of NMDARs that define key functional properties of this receptor - particularly the ratio of GluN2A and GluN2B subunits - in dorsolateral prefrontal cortex (DLPFC) from schizophrenia and control cases (37/37). We sought to test whether changes in these measures are specific to the subset of schizophrenia cases with high levels of inflammation-related mRNAs, defined as a high inflammatory subgroup. Quantitative autoradiography was used to detect 'functional' NMDARs ([3H]MK-801), GluN1-coupled-GluN2A subunits ([3H]CGP-39653), and GluN1-coupled-GluN2B subunits ([3H]Ifenprodil). Quantitative RT-PCR was used to measure NMDAR subunit transcripts (GRIN1, GRIN2A and GRIN2B). The ratios of GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNAs were calculated as an index of putative NMDAR composition. We found: 1) GluN2A binding, and 2) the ratios of GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNAs were lower in schizophrenia cases versus controls (p < 0.05), and 3) lower GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNA ratios were exaggerated in the high inflammation/schizophrenia subgroup compared to the low inflammation/control subgroup (p < 0.05). No other NMDAR-related indices were significantly changed in the high inflammation/schizophrenia subgroup. This suggests that neuroinflammation may alter NMDAR stoichiometry rather than targeting total NMDAR levels overall, and future studies could aim to determine if anti-inflammatory treatment can alleviate this aspect of NMDAR-related pathology.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Schizophrenia , Cerebral Cortex/metabolism , Dorsolateral Prefrontal Cortex , Humans , Inflammation , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/diagnostic imaging , Schizophrenia/genetics
8.
Mol Brain ; 14(1): 96, 2021 06 26.
Article in English | MEDLINE | ID: mdl-34174930

ABSTRACT

Reductions in the GABAergic neurotransmitter system exist across multiple brain regions in schizophrenia and encompass both pre- and postsynaptic components. While reduced midbrain GABAergic inhibitory neurotransmission may contribute to the hyperdopaminergia thought to underpin psychosis in schizophrenia, molecular changes consistent with this have not been reported. We hypothesised that reduced GABA-related molecular markers would be found in the midbrain of people with schizophrenia and that these would correlate with dopaminergic molecular changes. We hypothesised that downregulation of inhibitory neuron markers would be exacerbated in schizophrenia cases with high levels of neuroinflammation. Eight GABAergic-related transcripts were measured with quantitative PCR, and glutamate decarboxylase (GAD) 65/67 and GABAA alpha 3 (α3) (GABRA3) protein were measured with immunoblotting, in post-mortem midbrain (28/28 and 28/26 control/schizophrenia cases for mRNA and protein, respectively), and analysed by both diagnosis and inflammatory subgroups (as previously defined by higher levels of four pro-inflammatory cytokine transcripts). We found reductions (21 - 44%) in mRNA encoding both presynaptic and postsynaptic proteins, vesicular GABA transporter (VGAT), GAD1, and parvalbumin (PV) mRNAs and four alpha subunits (α1, α2, α3, α5) of the GABAA receptor in people with schizophrenia compared to controls (p < 0.05). Gene expression of somatostatin (SST) was unchanged (p = 0.485). We confirmed the reduction in GAD at the protein level (34%, p < 0.05). When stratifying by inflammation, only GABRA3 mRNA exhibited more pronounced changes in high compared to low inflammatory subgroups in schizophrenia. GABRA3 protein was expressed by 98% of tyrosine hydroxylase-positive neurons and was 23% lower in schizophrenia, though this did not reach statistical significance (p > 0.05). Expression of transcripts for GABAA receptor alpha subunits 2 and 3 (GABRA2, GABRA3) were positively correlated with tyrosine hydroxylase (TH) and dopamine transporter (DAT) transcripts in schizophrenia cases (GABRA2; r > 0.630, GABRA3; r > 0.762, all p < 0.001) but not controls (GABRA2; r < - 0.200, GABRA3; r < 0.310, all p > 0.05). Taken together, our results support a profound disruption to inhibitory neurotransmission in the substantia nigra regardless of inflammatory status, which provides a potential mechanism for disinhibition of nigrostriatal dopamine neurotransmission.


Subject(s)
Biomarkers/metabolism , Dopaminergic Neurons/pathology , GABAergic Neurons/pathology , Mesencephalon/pathology , Schizophrenia/pathology , Adult , Aged , Cohort Studies , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Female , Gene Expression Regulation , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Humans , Inflammation/genetics , Inflammation/pathology , Male , Middle Aged , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/pathology , Parvalbumins/metabolism , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Schizophrenia/genetics , Somatostatin/genetics , Somatostatin/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism , Young Adult , gamma-Aminobutyric Acid
9.
Mol Psychiatry ; 26(3): 849-863, 2021 03.
Article in English | MEDLINE | ID: mdl-31168068

ABSTRACT

The pathophysiology of dopamine dysregulation in schizophrenia involves alterations at the ventral midbrain level. Given that inflammatory mediators such as cytokines influence the functional properties of midbrain dopamine neurons, midbrain inflammation may play a role in schizophrenia by contributing to presynaptic dopamine abnormalities. Thus, we quantified inflammatory markers in dopaminergic areas of the midbrain of people with schizophrenia and matched controls. We also measured these markers in midbrain of mice exposed to maternal immune activation (MIA) during pregnancy, an established risk factor for schizophrenia and other psychiatric disorders. We found diagnostic increases in SERPINA3, TNFα, IL1ß, IL6, and IL6ST transcripts in schizophrenia compared with controls (p < 0.02-0.001). The diagnostic differences in these immune markers were accounted for by a subgroup of schizophrenia cases (~ 45%, 13/28) showing high immune status. Consistent with the human cohort, we identified increased expression of immune markers in the midbrain of adult MIA offspring (SERPINA3, TNFα, and IL1ß mRNAs, all p ≤ 0.01), which was driven by a subset of MIA offspring (~ 40%, 13/32) with high immune status. There were no diagnostic (human cohort) or group-wise (mouse cohort) differences in cellular markers indexing the density and/or morphology of microglia or astrocytes, but an increase in the transcription of microglial and astrocytic markers in schizophrenia cases and MIA offspring with high inflammation. These data demonstrate that immune-related changes in schizophrenia extend to dopaminergic areas of the midbrain and exist in the absence of changes in microglial cell number, but with putative evidence of microglial and astrocytic activation in the high immune subgroup. MIA may be one of the contributing factors underlying persistent neuroimmune changes in the midbrain of people with schizophrenia.


Subject(s)
Prenatal Exposure Delayed Effects , Schizophrenia , Animals , Behavior, Animal , Disease Models, Animal , Female , Mesencephalon , Mice , Microglia , Pregnancy , Schizophrenia/genetics
10.
Psychoneuroendocrinology ; 123: 104916, 2021 01.
Article in English | MEDLINE | ID: mdl-33169678

ABSTRACT

While high levels of glucocorticoids are generally neuro-damaging, a related adrenal steroid, dehydroepiandrosterone (DHEA), has anti-glucocorticoid and neuroprotective properties. Previous work has shown increased circulating levels of DHEA and abnormal cortisol/DHEA ratios in people with schizophrenia, however reports are limited and their relationship to neuropathology is unclear. We performed the largest study to date to compare levels of serum DHEA and cortisol/DHEA ratios in people with schizophrenia and healthy controls, and investigated the extent to which cortisol/DHEA ratios predict brain volume. Serum cortisol and DHEA were assayed in 94 people with schizophrenia and 81 healthy controls. T1-weighted high-resolution anatomical scans were obtained using a 3 T Achieva scanner on a subset of 59 people with schizophrenia and 60 healthy controls. Imaging data were preprocessed and analyzed using SPM12. People with schizophrenia had significantly increased serum DHEA levels (p = 0.002), decreased cortisol/DHEA ratios (p = 0.02) and no difference in cortisol levels compared to healthy controls. Cortisol/DHEA ratios were inversely correlated with hippocampal (r = -0.33 p = 0.01) and dorsolateral prefrontal cortex (r = -0.30, p = 0.02) volumes in patients. Our findings suggest that the cortisol/DHEA ratio may be a molecular blood signature of hippocampal and cortical damage. These results further implicate the role of DHEA and hypothalamic-pituitary-adrenal axis dysfunction in the pathophysiology of schizophrenia.


Subject(s)
Dehydroepiandrosterone , Dorsolateral Prefrontal Cortex , Hippocampus , Hydrocortisone , Schizophrenia , Case-Control Studies , Dehydroepiandrosterone/blood , Dorsolateral Prefrontal Cortex/pathology , Hippocampus/pathology , Humans , Hydrocortisone/blood , Organ Size , Schizophrenia/blood , Schizophrenia/physiopathology
11.
Front Immunol ; 11: 2002, 2020.
Article in English | MEDLINE | ID: mdl-33133060

ABSTRACT

Increased cytokine and inflammatory-related transcripts are found in the ventral midbrain, a dopamine neuron-rich region associated with schizophrenia symptoms. In fact, half of schizophrenia cases can be defined as having a "high inflammatory/immune biotype." Recent studies implicate both complement and macrophages in cortical neuroinflammation in schizophrenia. Our aim was to determine whether measures of transcripts related to phagocytosis/macrophages (CD163, CD64, and FN1), or related to macrophage adhesion [intercellular adhesion molecule 1 (ICAM1)], or whether CD163+ cell density, as well as protein and/or gene expression of complement pathway activators (C1qA) and mediators (C3 or C4), are increased in the midbrain in schizophrenia, especially in those with a high inflammatory biotype. We investigated whether complement mRNA levels correlate with macrophage and/or microglia and/or astrocyte markers. We found CD163+ cells around blood vessels and in the parenchyma and increases in ICAM1, CD163, CD64, and FN1 mRNAs as well as increases in all complement transcripts in the midbrain of schizophrenia cases with high inflammation. While we found positive correlations between complement transcripts (C1qA and C3) and microglia or astrocyte markers across diagnostic and inflammatory subgroups, the only unique strong positive correlation was between CD163 and C1qA mRNAs in schizophrenia cases with high inflammation. Our study is the first to suggest that more circulating macrophages may be attracted to the midbrain in schizophrenia, and that increased macrophages are linked to increased complement pathway activation in tissue and may contribute to dopamine dysregulation in schizophrenia. Single-cell transcriptomic studies and mechanistic preclinical studies are required to test these possibilities.


Subject(s)
Complement C1q/metabolism , Complement C3/metabolism , Macrophages/physiology , Mesencephalon/physiology , Schizophrenia/immunology , Adult , Aged , Cohort Studies , Complement C1q/genetics , Complement C3/genetics , Complement C4/genetics , Complement C4/metabolism , Female , Humans , Male , Middle Aged , Up-Regulation , Young Adult
12.
Sci Rep ; 10(1): 1982, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029751

ABSTRACT

People with schizophrenia exhibit deficits in inhibitory neurons and cognition. The timing of maternal immune activation (MIA) may present distinct schizophrenia-like phenotypes in progeny. We investigated whether early gestation [gestational day (GD) 10] or late gestation (GD19) MIA, via viral mimetic polyI:C, produces deficits in inhibitory neuron indices (GAD1, PVALB, SST, SSTR2 mRNAs) within cortical, striatal, and hippocampal subregions of male adult rat offspring. In situ hybridisation revealed that polyI:C offspring had: (1) SST mRNA reductions in the cingulate cortex and nucleus accumbens shell, regardless of MIA timing; (2) SSTR2 mRNA reductions in the cortex and striatum of GD19, but not GD10, MIA; (3) no alterations in cortical or striatal GAD1 mRNA of polyI:C offspring, but an expected reduction of PVALB mRNA in the infralimbic cortex, and; (4) no alterations in inhibitory markers in hippocampus. Maternal IL-6 response negatively correlated with adult offspring SST mRNA in cortex and striatum, but not hippocampus. These results show lasting inhibitory-related deficits in cortex and striatum in adult offspring from MIA. SST downregulation in specific cortical and striatal subregions, with additional deficits in somatostatin-related signalling through SSTR2, may contribute to some of the adult behavioural changes resulting from MIA and its timing.


Subject(s)
Neural Inhibition/immunology , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects/immunology , Schizophrenia/immunology , Animals , Behavior, Animal , Biomarkers/analysis , Biomarkers/metabolism , Cerebral Cortex/pathology , Corpus Striatum/pathology , Disease Models, Animal , Down-Regulation/immunology , Female , Glutamate Decarboxylase/analysis , Glutamate Decarboxylase/metabolism , Hippocampus/pathology , Humans , Interleukin-6/analysis , Interleukin-6/metabolism , Interneurons/immunology , Interneurons/metabolism , Interneurons/pathology , Male , Poly I-C/immunology , Pregnancy , Rats , Receptors, Somatostatin/analysis , Receptors, Somatostatin/metabolism , Schizophrenia/pathology , Sex Factors , Signal Transduction/immunology , Somatostatin/analysis , Somatostatin/metabolism , Time Factors
13.
Psychiatry Res ; 280: 112503, 2019 10.
Article in English | MEDLINE | ID: mdl-31446215

ABSTRACT

Anxiety and depressive disorders are more prevalent in hypogonadal men. Low testosterone levels are associated with greater negative symptoms and impaired cognition in men with schizophrenia. Thus, androgens may contribute to brain pathophysiology in psychiatric disorders. We investigated androgen-related mRNAs in post-mortem dorsolateral prefrontal cortex of psychiatric disorders. We also assessed androgen receptor (AR) CAG trinucleotide repeat length, a functional AR gene variant associated with AR gene expression, receptor activity, and circulating testosterone. AR CAG repeat length was determined from genomic DNA and AR and 5α-reductase mRNAs measured using quantitative PCR in schizophrenia, bipolar disorder and control cases [n = 35/group; Stanley Medical Research Institute (SMRI) Array collection]. Layer-specific AR gene expression was determined using in situ hybridisation in schizophrenia, bipolar disorder, major depressive disorder and control cases (n = 15/group; SMRI Neuropathology Consortium). AR mRNA was increased in bipolar disorder, but was unchanged in schizophrenia, relative to controls. AR and 5α-reductase mRNAs were significantly positively correlated in bipolar disorder. AR CAG repeat length was significantly shorter in bipolar disorder relative to schizophrenia. AR mRNA expression was highest in cortical layers IV and V, but no layer-specific diagnostic differences were detected. Together, our results suggest enhanced cortical androgen action in people with bipolar disorder.


Subject(s)
Bipolar Disorder/metabolism , Depressive Disorder, Major/metabolism , Prefrontal Cortex/metabolism , Receptors, Androgen/biosynthesis , Schizophrenia/metabolism , Adult , Aged , Androgens/biosynthesis , Androgens/genetics , Bipolar Disorder/genetics , Bipolar Disorder/psychology , Case-Control Studies , Depressive Disorder, Major/genetics , Depressive Disorder, Major/psychology , Female , Humans , Male , Middle Aged , Receptors, Androgen/genetics , Schizophrenia/genetics , Schizophrenic Psychology , Testosterone/metabolism
14.
Mol Neuropsychiatry ; 5(1): 28-41, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31019916

ABSTRACT

Lower testosterone levels are associated with greater negative symptoms in men with schizophrenia. Testosterone signals via androgen receptor (AR). A functional variant in the AR gene (CAG trinucleotide repeat polymorphism) is associated with circulating testosterone and mood-related symptoms in healthy people. Raloxifene increases testosterone in healthy males and reduces symptom severity and improves cognition in schizophrenia; however, whether raloxifene increases testosterone in men with schizophrenia is unknown. We assessed the interaction of a functional AR gene variant and adjunctive raloxifene on peripheral testosterone and symptom severity in schizophrenia. Patients with schizophrenia (59 males and 38 females) participated in a randomized, double-blind, placebo-controlled, crossover trial of adjunctive raloxifene (120 mg/day). Healthy adults (46 males and 41 females) were used for baseline comparison. Baseline circulating testosterone was decreased in male patients compared to male controls and positively correlated with CAG repeat length in male controls and female patients. Male patients with short, compared to long, CAG repeat length had higher stress scores. Raloxifene treatment increased testosterone in male patients, but was unrelated to AR CAG repeat length, suggesting that raloxifene's effects may not depend on AR activity. Sex-specific alterations of the relationship between AR CAG repeat length and testosterone suggest that altered AR activity may impact perceived stress in men with schizophrenia.

15.
Handb Clin Neurol ; 150: 221-235, 2018.
Article in English | MEDLINE | ID: mdl-29496143

ABSTRACT

Schizophrenia is a disabling disease impacting millions of people around the world, for which there is no known cure. Current antipsychotic treatments for schizophrenia mainly target psychotic symptoms, do little to ameliorate social or cognitive deficits, have side-effects that cause weight gain, and diabetes and 30% of people do not respond. Thus, better therapeutics for schizophrenia aimed at the route biologic changes are needed and discovering the underlying neurobiology is key to this quest. Postmortem brain studies provide the most direct and detailed way to determine the pathophysiology of schizophrenia. This chapter outlines steps that can be taken to ensure the best-quality molecular data from postmortem brain tissue are obtained. In this chapter, we also discuss targeted and high-throughput methods for examining gene and protein expression and some of the strengths and limitations of each method. We briefly consider why gene and protein expression changes may not always concur within brain tissue. We conclude that postmortem brain research that investigates gene and protein expression in well-characterized and matched brain cohorts provides an important foundation to be considered when interpreting data obtained from studies of living schizophrenia patients.


Subject(s)
Biomedical Research/methods , Brain/pathology , Molecular Medicine , Schizophrenia/genetics , Schizophrenia/pathology , Humans , Neurobiology
16.
Front Psychiatry ; 8: 77, 2017.
Article in English | MEDLINE | ID: mdl-28928676

ABSTRACT

BACKGROUND: Glutamatergic receptor [N-methyl-d-aspartate receptor (NMDAR)] alterations within cortex, hippocampus, and striatum are linked to schizophrenia pathology. Maternal immune activation (MIA) is an environmental risk factor for the development of schizophrenia in offspring. In rodents, gestational timing of MIA may result in distinct behavioral outcomes in adulthood, but how timing of MIA may impact the nature and extent of NMDAR-related changes in brain is not known. We hypothesize that NMDAR-related molecular changes in rat cortex, striatum, and hippocampus are induced by MIA and are dependent on the timing of gestational inflammation and sex of the offspring. METHODS: Wistar dams were treated the with viral mimic, polyriboinosinic:polyribocytidylic acid (polyI:C), or vehicle on either gestational day 10 or 19. Fresh-frozen coronal brain sections were collected from offspring between postnatal day 63-91. Autoradiographic binding was used to infer levels of the NMDAR channel, and NR2A and NR2B subunits in cortex [cingulate (Cg), motor, auditory], hippocampus (dentate gyrus, cornu ammonis area 3, cornu ammonis area 1), and striatum [dorsal striatum, nucleus accumbens core, and nucleus accumbens shell (AS)]. NR1 and NR2A mRNA levels were measured by in situ hybridization in cortex, hippocampus, and striatum in male offspring only. RESULTS: In the total sample, NMDAR channel binding was elevated in the Cg of polyI:C offspring. NR2A binding was elevated, while NR2B binding was unchanged, in all brain regions of polyI:C offspring overall. Male, but not female, polyI:C offspring exhibited increased NMDAR channel and NR2A binding in the striatum overall, and increased NR2A binding in the cortex overall. Male polyI:C offspring exhibited increased NR1 mRNA in the AS, and increased NR2A mRNA in cortex and subregions of the hippocampus. CONCLUSION: MIA may alter glutamatergic signaling in cortical and hippocampal regions via alterations in NMDAR indices; however, this was independent of gestational timing. Male MIA offspring have exaggerated changes in NMDAR compared to females in both the cortex and striatum. The MIA-induced increase in NR2A may decrease brain plasticity and contribute to the exacerbated behavioral changes reported in males and indicate that the brains of male offspring are more susceptible to long-lasting changes in glutamate neurotransmission induced by developmental inflammation.

18.
Schizophr Res ; 168(3): 661-70, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26088421

ABSTRACT

Late adolescence in males is a period of increased susceptibility for the onset of schizophrenia, coinciding with increased circulating testosterone. The cognitive deficits prevalent in schizophrenia may be related to unhealthy cortical interneurons, which are trophically dependent on brain derived neurotrophic factor. We investigated, under conditions of depleted (monkey and rat) and replaced (rat) testosterone over adolescence, changes in gene expression of cortical BDNF and TrkB transcripts and interneuron markers and the relationships between these mRNAs and circulating testosterone. Testosterone removal by gonadectomy reduced gene expression of some BDNF transcripts in monkey and rat frontal cortices and the BDNF mRNA reduction was prevented by testosterone replacement. In rat, testosterone replacement increased the potential for classical TrkB signalling by increasing the full length to truncated TrkB mRNA ratio, whereas in the monkey cortex, circulating testosterone was negatively correlated with the TrkB full length/truncated mRNA ratio. We did not identify changes in interneuron gene expression in monkey frontal cortex in response to gonadectomy, and in rat, we showed that only somatostatin mRNA was decreased by gonadectomy but not restored by testosterone replacement. We identified complex and possibly species-specific, relationships between BDNF/TrkB gene expression and interneuron marker gene expression that appear to be dependent on the presence of testosterone at adolescence in rat and monkey frontal cortices. Taken together, our findings suggest there are dynamic relationships between BDNF/TrkB and interneuron markers that are dependent on the presence of testosterone but that this may not be a straightforward increase in testosterone leading to changes in BDNF/TrkB that contributes to interneuron health.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Frontal Lobe/growth & development , Frontal Lobe/metabolism , Interneurons/metabolism , Receptor, trkB/metabolism , Testosterone/metabolism , Animals , Hormones/administration & dosage , Macaca mulatta , Male , Nerve Growth Factors/metabolism , Orchiectomy , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Somatostatin/metabolism , Species Specificity , Testosterone/administration & dosage
19.
BMC Neurosci ; 16: 4, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25886766

ABSTRACT

BACKGROUND: Testosterone attenuates postnatal hippocampal neurogenesis in adolescent male rhesus macaques through altering neuronal survival. While brain-derived neurotropic factor (BDNF)/ tyrosine kinase receptor B (TrkB) are critical in regulating neuronal survival, it is not known if the molecular mechanism underlying testosterone's action on postnatal neurogenesis involves changes in BDNF/TrkB levels. First, (1) we sought to localize the site of synthesis of the full length and truncated TrkB receptor in the neurogenic regions of the adolescent rhesus macaque hippocampus. Next, (2) we asked if gonadectomy or sex hormone replacement altered hippocampal BDNF and TrkB expression level in mammalian hippocampus (rhesus macaque and Sprague Dawley rat), and (3) if the relationship between BDNF/TrkB expression was altered depending on the sex steroid environment. RESULTS: We find that truncated TrkB mRNA+ cells are highly abundant in the proliferative subgranular zone (SGZ) of the primate hippocampus; in addition, there are scant and scattered full length TrkB mRNA+ cells in this region. Gonadectomy or sex steroid replacement did not alter BDNF or TrkB mRNA levels in young adult male rat or rhesus macaque hippocampus. In the monkey and rat, we find a positive correlation with cell proliferation and TrkB-TK+ mRNA expression, and this positive relationship was found only when sex steroids were present. CONCLUSIONS: We suggest that testosterone does not down-regulate neurogenesis at adolescence via overall changes in BDNF or TrkB expression. However, BDNF/TrkB mRNA appears to have a greater link to cell proliferation in the presence of circulating testosterone.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/growth & development , Hippocampus/metabolism , RNA, Messenger/metabolism , Receptor, trkB/metabolism , Testosterone/metabolism , Animals , Bromodeoxyuridine , Hippocampus/drug effects , Hormone Replacement Therapy , Immunohistochemistry , In Situ Hybridization , Ki-67 Antigen/metabolism , Macaca mulatta , Male , Neurogenesis/drug effects , Neurogenesis/physiology , Orchiectomy , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Species Specificity , Stem Cell Niche/drug effects , Stem Cell Niche/physiology , Testosterone/administration & dosage
20.
Horm Behav ; 70: 73-84, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25747465

ABSTRACT

Although sex steroids are known to modulate brain dopamine, it is still unclear how testosterone modifies locomotor behaviour controlled, at least in part, by striatal dopamine in adolescent males. Our previous work suggests that increasing testosterone during adolescence may bias midbrain neurons to synthesise more dopamine. We hypothesised that baseline and amphetamine-induced locomotion would differ in adult males depending on testosterone exposure during adolescence. We hypothesised that concomitant stimulation of estrogen receptor signaling, through a selective estrogen receptor modulator (SERM), raloxifene, can counter testosterone effects on locomotion. Male Sprague-Dawley rats at postnatal day 45 were gonadectomised (G) or sham-operated (S) prior to the typical adolescent testosterone increase. Gonadectomised rats were either given testosterone replacement (T) or blank implants (B) for six weeks and sham-operated (i.e. intact or endogenous testosterone group) were given blank implants. Subgroups of sham-operated, gonadectomised and gonadectomised/testosterone-replaced rats were treated with raloxifene (R, 5mg/kg) or vehicle (V), daily for the final four weeks. There were six groups (SBV, GBV, GTV, SBR, GBR, GTR). Saline and amphetamine-induced (1.25mg/kg) locomotion in the open field was measured at PND85. Gonadectomy increased amphetamine-induced locomotion compared to rats with endogenous or with exogenous testosterone. Raloxifene increased amphetamine-induced locomotion in rats with either endogenous or exogenous testosterone. Amphetamine-induced locomotion was negatively correlated with testosterone and this relationship was abolished by raloxifene. Lack of testosterone during adolescence potentiates and testosterone exposure during adolescence attenuates amphetamine-induced locomotion. Treatment with raloxifene appears to potentiate amphetamine-induced locomotion and to have an opposite effect to that of testosterone in male rats.


Subject(s)
Amphetamine/pharmacology , Central Nervous System Stimulants/pharmacology , Motor Activity/drug effects , Raloxifene Hydrochloride/antagonists & inhibitors , Selective Estrogen Receptor Modulators/pharmacology , Testosterone/pharmacology , Animals , Dopamine/metabolism , Drug Synergism , Male , Neostriatum/drug effects , Neostriatum/metabolism , Orchiectomy , Organ Size/drug effects , Raloxifene Hydrochloride/pharmacology , Rats , Rats, Sprague-Dawley , Seminal Vesicles/anatomy & histology , Seminal Vesicles/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...