Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(21): 8026-8034, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37191998

ABSTRACT

There are widespread policy assumptions that the phase-out of gasoline and diesel internal combustion engines will over time lead to much reduced emissions of Volatile Organic Compounds (VOCs) from road transport and related fuels. However, the use of real-world emissions measurements from a new mobile air quality monitoring station demonstrated a large underestimation of alcohol-based species in road transport emissions inventories. Scaling of industry sales statistics enabled the discrepancy to be attributed to the use of ancillary solvent products such as screenwash and deicer which are not included in internationally applied vehicle emission methodologies. A fleet average nonfuel nonexhaust VOC emission factor of 58 ± 39 mg veh-1 km-1 was calculated for the missing source, which is greater than the total of all VOCs emitted from vehicle exhausts and their associated evaporative fuel losses. These emissions are independent of the vehicle energy/propulsion system and therefore applicable to all road vehicle types including those with battery-electric powertrains. In contrast to predictions, vehicle VOC emissions may actually increase given a predicted growth in total vehicle kilometers driven in a future electrified fleet and will undergo a complete VOC respeciation due to the source change.


Subject(s)
Air Pollutants , Air Pollution , Volatile Organic Compounds , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Vehicle Emissions/analysis , Air Pollution/analysis , Gasoline/analysis
2.
Sci Total Environ ; 858(Pt 1): 159702, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36309263

ABSTRACT

Hydraulic fracturing (fracking) is a short phase in unconventional oil and natural gas (O&G) development. Before fracking there is a lengthy period of preparation, which can represent a significant proportion of the well lifecycle. Extensive infrastructure is delivered onto site, leading to increased volumes of heavy traffic, energy generation and construction work on site. Termed the "pre-operational" period, this is rarely investigated as air quality evaluations typically focus on the extraction phase. In this work we quantify the change in air pollution during pre-operational activities at a shale gas exploration site near Kirby Misperton, North Yorkshire, England. Baseline air quality measurements were made two years prior to any shale gas activity and were used as a training dataset for random forest (RF) machine learning models. The models allowed for a comparison between observed air quality during the pre-operational phase and a counterfactual business as usual (BAU) prediction. During the pre-operational phase a significant deviation from the BAU scenario was observed. This was characterised by significant enhancements in NOx and a concurrent reduction in O3, caused by extensive additional vehicle movements and the presence of combustion sources such as generators on the well pad. During the pre-operational period NOx increased by 274 % and O3 decreased by 29 % when compared to BAU model values. There was also an increase in primary emissions of NO2 during the pre-operational phase which may have implications for the attainment of ambient air quality standards in the local surroundings. Unconventional O&G development remains under discussion as a potential option for improving the security of supply of domestic energy, tensioned however against significant environmental impacts. Here we demonstrate that the preparative work needed to begin fracking elevates air pollution in its own right, a further potential disbenefit that should be considered.


Subject(s)
Air Pollutants , Air Pollution , Hydraulic Fracking , Natural Gas/analysis , Air Pollutants/analysis , Environmental Monitoring , Air Pollution/analysis
3.
J Air Waste Manag Assoc ; 70(12): 1324-1339, 2020 12.
Article in English | MEDLINE | ID: mdl-32915694

ABSTRACT

We report measurements of methane (CH4) mixing ratios and emission fluxes derived from sampling at a monitoring station at an exploratory shale gas extraction facility in Lancashire, England. Elevated ambient CH4 mixing ratios were recorded in January 2019 during a period of cold-venting associated with a nitrogen lift process at the facility. These processes are used to clear the well to stimulate flow of natural gas from the target shale. Estimates of CH4 flux during the emission event were made using three independent modeling approaches: Gaussian plume dispersion (following both a simple Gaussian plume inversion and the US EPA OTM 33-A method), and a Lagrangian stochastic transport model (WindTrax). The three methods yielded an estimated peak CH4 flux during January 2019 of approximately 70 g s-1. The total mass of CH4 emitted during the six-day venting period was calculated to be 2.9, 4.2 ± 1.4(1σ) and 7.1 ± 2.1(1σ) tonnes CH4 using the simple Gaussian plume model, WindTrax, and OTM-33A methods, respectively. Whilst the flux approaches all agreed within 1σ uncertainty, an estimate of 4.2 (± 1.4) tonnes CH4 represents the most confident assessment due to the explicit modeling of advection and meteorological stability permitted using the WindTrax model. This mass is consistent with fluxes calculated by the Environment Agency (in the range 2.7 to 6.8 tonnes CH4), using emission data provided by the shale site operator to the regulator. This study provides the first CH4 emission estimate for a nitrogen lift process and the first-reported flux monitoring of a UK shale gas site, and contributes to the evaluation of the environmental impacts of shale gas operations worldwide. This study also provides forward guidance on future monitoring applications and flux calculation in transient emission events. Implications: This manuscript discusses atmospheric measurements near to the UK's first hydraulic fracturing facility, which has very high UK public, media, and policy interest. The focus of this manuscript is on a single week of data in which a large venting event at the shale gas site saw emissions of ~4 tonnes of methane to atmosphere, in breach of environmental permits. These results are likely to beresults are likely to be reported by the media and may influence future policy decisions concerning the UK hydraulic fracturing industry.


Subject(s)
Air Pollutants/analysis , Extraction and Processing Industry , Methane/analysis , Natural Gas , England , Environmental Monitoring , Models, Theoretical
4.
Sci Total Environ ; 684: 1-13, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31150871

ABSTRACT

We report a 24-month statistical baseline climatology for continuously-measured atmospheric carbon dioxide (CO2) and methane (CH4) mixing ratios linked to surface meteorology as part of a wider environmental baselining project tasked with understanding pre-existing local environmental conditions prior to shale gas exploration in the United Kingdom. The baseline was designed to statistically characterise high-precision measurements of atmospheric composition gathered over two full years (between February 1st 2016 and January 31st 2018) at fixed ground-based measurement stations on, or near to, two UK sites being developed for shale gas exploration involving hydraulic fracturing. The sites, near Blackpool (Lancashire) and Kirby Misperton (North Yorkshire), were the first sites approved in the UK for shale gas exploration since a moratorium was lifted in England. The sites are operated by Cuadrilla Resources Ltd. and Third Energy Ltd., respectively. A statistical climatology of greenhouse gas mixing ratios linked to prevailing local surface meteorology is presented. This study diagnoses and interprets diurnal, day-of-week, and seasonal trends in measured mixing ratios and the contributory role of local, regional and long-range emission sources. The baseline provides a set of contextual statistical quantities against which the incremental impacts of new activities (in this case, future shale gas exploration) can be quantitatively assessed. The dataset may also serve to inform the design of future case studies, as well as direct baseline monitoring design at other potential shale gas and industrial sites. In addition, it provides a quantitative reference for future analyses of the impact, and efficacy, of specific policy interventions or mitigating practices. For example, statistically significant excursions in measured concentrations from this baseline (e.g. >99th percentile) observed during phases of operational extraction may be used to trigger further examination in order to diagnose the source(s) of emission and links to on-site activities at the time, which may be of importance to regulators, site operators and public health stakeholders. A guideline algorithm for identifying these statistically significant excursions, or "baseline deviation events", from the expected baseline conditions is presented and tested. Gaussian plume modelling is used to further these analyses, by simulating approximate upper-limits of CH4 fluxes which could be expected to give observable enhancements at the monitoring stations under defined meteorological conditions.

5.
Sci Total Environ ; 673: 445-454, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-30991334

ABSTRACT

Rural observations of air quality and meteorological parameters (NOx, O3, NMHCs, SO2, PM) were made over a 2.5-year period (2016-2018) before, during and after preparations for hydraulic fracturing (fracking) at a shale gas exploration site near Kirby Misperton, North Yorkshire, England. As one of the first sites to apply for permits to carry out hydraulic fracturing, it has been subject to extensive regulatory and public scrutiny, as well as the focus for a major programme of long-term environmental monitoring. A baseline period of air quality monitoring (starting 2016) established the annual climatology of atmospheric composition against which a 20-week period of intensive activity on the site in preparation for hydraulic fracturing could be compared. During this 'pre-operational phase' of work in late 2017, the most significant effect was an increase in ambient NO (3-fold) and NOx (2-fold), arising from a combination of increased vehicle activity and operation of equipment on site. Although ambient NOx increased, air quality limit values for NO2 were not exceeded, even close to the well-site. Local ozone concentrations during the pre-operational period were slightly lower than the baseline phase due to titration with primary emitted NO. The activity on site did not lead to significant changes in airborne particulate matter or non-methane hydrocarbons. Hydraulic fracturing of the well did not subsequently take place and the on-site equipment was decommissioned and removed. Air quality parameters then returned to the original (baseline) climatological conditions. This work highlights the need to characterise the full annual climatology of air quality parameters against which short-term local activity changes can be compared. Based on this study, changes to ambient NOx appear to be the most significant air quality ahead of hydraulic fracturing. However, in rural locations, concentrations at individual sites are expected to be below ambient air quality limit thresholds.

6.
Faraday Discuss ; 200: 599-620, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28580967

ABSTRACT

Volatile organic compounds (VOCs) originate from a variety of sources, and play an intrinsic role in influencing air quality. Some VOCs, including benzene, are carcinogens and so directly affect human health, while others, such as isoprene, are very reactive in the atmosphere and play an important role in the formation of secondary pollutants such as ozone and particles. Here we report spatially-resolved measurements of the surface-to-atmosphere fluxes of VOCs across London and SE England made in 2013 and 2014. High-frequency 3-D wind velocities and VOC volume mixing ratios (made by proton transfer reaction - mass spectrometry) were obtained from a low-flying aircraft and used to calculate fluxes using the technique of eddy covariance. A footprint model was then used to quantify the flux contribution from the ground surface at spatial resolution of 100 m, averaged to 1 km. Measured fluxes of benzene over Greater London showed positive agreement with the UK's National Atmospheric Emissions Inventory, with the highest fluxes originating from central London. Comparison of MTBE and toluene fluxes suggest that petroleum evaporation is an important emission source of toluene in central London. Outside London, increased isoprene emissions were observed over wooded areas, at rates greater than those predicted by a UK regional application of the European Monitoring and Evaluation Programme model (EMEP4UK). This work demonstrates the applicability of the airborne eddy covariance method to the determination of anthropogenic and biogenic VOC fluxes and the possibility of validating emission inventories through measurements.

8.
Faraday Discuss ; 189: 455-72, 2016 Jul 18.
Article in English | MEDLINE | ID: mdl-27098421

ABSTRACT

To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct measurement of pollutant fluxes from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. Fluxes of NOx were measured using the eddy-covariance technique from an aircraft flying at low altitude over London. The highest fluxes were observed over central London, with lower fluxes measured in suburban areas. A footprint model was used to estimate the spatial area from which the measured emissions occurred. This allowed comparison of the flux measurements to the UK's National Atmospheric Emissions Inventory (NAEI) for NOx, with scaling factors used to account for the actual time of day, day of week and month of year of the measurement. The comparison suggests significant underestimation of NOx emissions in London by the NAEI, mainly due to its under-representation of real world road traffic emissions. A comparison was also carried out with an enhanced version of the inventory using real world driving emission factors and road measurement data taken from the London Atmospheric Emissions Inventory (LAEI). The measurement to inventory agreement was substantially improved using the enhanced version, showing the importance of fully accounting for road traffic, which is the dominant NOx emission source in London. In central London there was still an underestimation by the inventory of 30-40% compared with flux measurements, suggesting significant improvements are still required in the NOx emissions inventory.

9.
Environ Sci Technol ; 49(2): 1025-34, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25494849

ABSTRACT

Direct measurements of NOx concentration and flux were made from a tall tower in central London, UK as part of the Clean Air for London (ClearfLo) project. Fast time resolution (10 Hz) NO and NO2 concentrations were measured and combined with fast vertical wind measurements to provide top-down flux estimates using the eddy covariance technique. Measured NOx fluxes were usually positive and ranged from close to zero at night to 2000-8000 ng m(-2) s(-1) during the day. Peak fluxes were usually observed in the morning, coincident with the maximum traffic flow. Measurements of the NOx flux have been scaled and compared to the UK National Atmospheric Emissions Inventory (NAEI) estimate of NOx emission for the measurement footprint. The measurements are on average 80% higher than the NAEI emission inventory for all of London. Observations made in westerly airflow (from parts of London where traffic is a smaller fraction of the NOx source) showed a better agreement on average with the inventory. The observations suggest that the emissions inventory is poorest at estimating NOx when traffic is the dominant source, in this case from an easterly direction from the BT Tower. Agreement between the measurements and the London Atmospheric Emissions Inventory (LAEI) are better, due to the more explicit treatment of traffic flow by this more detailed inventory. The flux observations support previous tailpipe observations of higher NOx emitted from the London vehicle diesel fleet than is represented in the NAEI or predicted for several EURO emission control technologies. Higher-than-anticipated vehicle NOx is likely responsible for the significant discrepancies that exist in London between observed NOx and long-term NOx projections.


Subject(s)
Air Pollutants/analysis , Nitric Oxide/analysis , Nitrogen Dioxide/analysis , Nitrogen/analysis , Vehicle Emissions/analysis , Atmosphere , Environmental Monitoring/methods , Gases , London
SELECTION OF CITATIONS
SEARCH DETAIL
...