Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Nat Biomed Eng ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363106

ABSTRACT

Lipid nanoparticles (LNPs) are the most clinically advanced delivery vehicle for RNA therapeutics, partly because of established lipid structure-activity relationships focused on formulation potency. Yet such knowledge has not extended to LNP immunogenicity. Here we show that the innate and adaptive immune responses elicited by LNPs are linked to their ionizable lipid chemistry. Specifically, we show that the amine headgroups in ionizable lipids drive LNP immunogenicity by binding to Toll-like receptor 4 and CD1d and by promoting lipid-raft formation. Immunogenic LNPs favour a type-1 T-helper-cell-biased immune response marked by increases in the immunoglobulins IgG2c and IgG1 and in the pro-inflammatory cytokines tumour necrosis factor, interferon γ and the interleukins IL-6 and IL-2. Notably, the inflammatory signals originating from these receptors inhibit the production of anti-poly(ethylene glycol) IgM antibodies, preventing the often-observed loss of efficacy in the LNP-mediated delivery of siRNA and mRNA. Moreover, we identified computational methods for the prediction of the structure-dependent innate and adaptive responses of LNPs. Our findings may help accelerate the discovery of well-tolerated ionizable lipids suitable for repeated dosing.

2.
Eur J Haematol ; 112(1): 6-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37545253

ABSTRACT

Chimeric antigen receptor T (CAR-T) therapy has emerged as a revolutionary new pillar in cancer care, particularly in relapsed/refractory (r/r) B-cell malignancies. Following impressive clinical outcomes in hematological malignancies, the FDA-approved six CAR-T cell products for indications such as lymphoma, leukemia, and myeloma. Despite the numerous advantages of CAR-T cell treatment, several challenges exist that interfere with its therapeutic efficacy. Serious adverse effects connected with the treatment continue to be a major concern. In addition, poor persistence of therapeutics and antigen escape frequently result in tumor relapse. Exorbitant treatment cost further remains a significant barrier to its effective implementation, limiting its accessibility. This review presents progress of CAR-T research, the key obstacles that hamper promising outcomes for patients with hematological malignancies, and a few strategies to overcome them.


Subject(s)
Hematologic Neoplasms , Leukemia , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Hematologic Neoplasms/therapy , Immunotherapy, Adoptive/adverse effects , Cell- and Tissue-Based Therapy
3.
J Immunol ; 212(2): 302-316, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38019129

ABSTRACT

Immune cell-derived IL-17A is one of the key pathogenic cytokines in psoriasis, an immunometabolic disorder. Although IL-17A is an established regulator of cutaneous immune cell biology, its functional and metabolic effects on nonimmune cells of the skin, particularly keratinocytes, have not been comprehensively explored. Using multiomics profiling and systems biology-based approaches, we systematically uncover significant roles for IL-17A in the metabolic reprogramming of human primary keratinocytes (HPKs). High-throughput liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance spectroscopy revealed IL-17A-dependent regulation of multiple HPK proteins and metabolites of carbohydrate and lipid metabolism. Systems-level MitoCore modeling using flux-balance analysis identified IL-17A-mediated increases in HPK glycolysis, glutaminolysis, and lipid uptake, which were validated using biochemical cell-based assays and stable isotope-resolved metabolomics. IL-17A treatment triggered downstream mitochondrial reactive oxygen species and HIF1α expression and resultant HPK proliferation, consistent with the observed elevation of these downstream effectors in the epidermis of patients with psoriasis. Pharmacological inhibition of HIF1α or reactive oxygen species reversed IL-17A-mediated glycolysis, glutaminolysis, lipid uptake, and HPK hyperproliferation. These results identify keratinocytes as important target cells of IL-17A and reveal its involvement in multiple downstream metabolic reprogramming pathways in human skin.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Interleukin-17 , Metabolic Reprogramming , Psoriasis , Reactive Oxygen Species , Cells, Cultured , Humans , Interleukin-17/metabolism , Metabolic Reprogramming/genetics , Reactive Oxygen Species/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Keratinocytes/cytology , Cell Proliferation/genetics , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Up-Regulation , Lipid Metabolism , Psoriasis/genetics , Psoriasis/metabolism
4.
Front Immunol ; 14: 1118246, 2023.
Article in English | MEDLINE | ID: mdl-37006286

ABSTRACT

Glioblastoma is one of the most difficult tumor types to manage, having high morbidity and mortality with available therapies (surgery, radiotherapy and chemotherapy). Immunotherapeutic agents like Oncolytic Viruses (OVs), Immune Checkpoint Inhibitors (ICIs), Chimeric Antigen Receptor (CAR) T cells and Natural Killer (NK) cell therapies are now being extensively used as experimental therapies in the management of glioblastoma. Oncolytic virotherapy is an emerging form of anti-cancer therapy, employing nature's own agents to target and destroy glioma cells. Several oncolytic viruses have demonstrated the ability to infect and lyse glioma cells by inducing apoptosis or triggering an anti-tumor immune response. In this mini-review, we discuss the role of OV therapy (OVT) in malignant gliomas with a special focus on ongoing and completed clinical trials and the ensuing challenges and perspectives thereof in subsequent sections.


Subject(s)
Glioblastoma , Glioma , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Glioblastoma/therapy , Glioma/therapy , Immunotherapy, Adoptive
5.
ACS Synth Biol ; 11(11): 3743-3758, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36325971

ABSTRACT

Mammalian cells exhibit a high degree of intercellular variability in cell cycle period and phase durations. However, the factors orchestrating the cell cycle duration heterogeneities remain unclear. Herein, by combining cell cycle network-based mathematical models with live single-cell imaging studies under varied serum conditions, we demonstrate that fluctuating transcription rates of cell cycle regulatory genes across cell lineages and during cell cycle progression in mammalian cells majorly govern the robust correlation patterns of cell cycle period and phase durations among sister, cousin, and mother-daughter lineage pairs. However, for the overall cellular population, alteration in the serum level modulates the fluctuation and correlation patterns of cell cycle period and phase durations in a correlated manner. These heterogeneities at the population level can be fine-tuned under limited serum conditions by perturbing the cell cycle network using a p38-signaling inhibitor without affecting the robust lineage-level correlations. Overall, our approach identifies transcriptional fluctuations as the key controlling factor for the cell cycle duration heterogeneities and predicts ways to reduce cell-to-cell variabilities by perturbing the cell cycle network regulations.


Subject(s)
Cell Cycle Proteins , Mammals , Animals , Cell Cycle/genetics , Cell Division , Cell Cycle Proteins/genetics , Cell Lineage , Mammals/metabolism
6.
Int Rev Immunol ; 41(6): 606-624, 2022.
Article in English | MEDLINE | ID: mdl-36191126

ABSTRACT

The unprecedented clinical success of Chimeric Antigen Receptor (CAR) T cell therapy in hematological malignancies has led researchers to study its role in solid tumors. Although, its utility in solid tumors especially in neuroblastoma has begun to emerge, preclinical studies of its efficacy in other solid tumors like osteosarcomas or gliomas has caught the attention of oncologist to be tried in clinical trials. Malignant high-grade brain tumors like glioblastomas or midline gliomas in children represent some of the most difficult malignancies to be managed with conventionally available therapeutics, while relapsed gliomas continue to have the most dismal prognosis due to limited therapeutic options. Innovative therapies such as CAR T cells could give an additional leverage to the treating oncologists by potentially improving outcomes and ameliorating the toxicity of the currently available therapies. Moreover, CAR T cell therapy has the potential to be integrated into the therapeutic paradigm for aggressive gliomas in the near future. In this review we discuss the challenges in using CAR T cell therapy in brain tumors, enumerate the completed and ongoing clinical trials of different types of CAR T cell therapy for different brain tumors with special emphasis on glioblastoma and also discuss the future role of CAR T cells in Brain tumors.


Subject(s)
Brain Neoplasms , Glioma , Receptors, Chimeric Antigen , Child , Humans , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/genetics , Brain Neoplasms/therapy , Brain Neoplasms/pathology
7.
Int Rev Immunol ; 41(6): 582-605, 2022.
Article in English | MEDLINE | ID: mdl-35938932

ABSTRACT

The aggressive and recurrent nature of glioblastoma is multifactorial and has been attributed to its biological heterogeneity, dysfunctional metabolic signaling pathways, rigid blood-brain barrier, inherent resistance to standard therapy due to the stemness property of the gliomas cells, immunosuppressive tumor microenvironment, hypoxia and neoangiogenesis which are very well orchestrated and create the tumor's own highly pro-tumorigenic milieu. Once the relay of events starts amongst these components, eventually it becomes difficult to control the cascade using only the balanced contemporary care of treatment consisting of maximal resection, radiotherapy and chemotherapy with temozolamide. Over the past few decades, implementation of contemporary treatment modalities has shown benefit to some extent, but no significant overall survival benefit is achieved. Therefore, there is an unmet need for advanced multifaceted combinatorial strategies. Recent advances in molecular biology, development of innovative therapeutics and novel delivery platforms over the years has resulted in a paradigm shift in gliomas therapeutics. Decades of research has led to emergence of several treatment molecules, including immunotherapies such as immune checkpoint blockade, oncolytic virotherapy, adoptive cell therapy, nanoparticles, CED and BNCT, each with the unique proficiency to overcome the mentioned challenges, present research. Recent years are seeing innovative combinatorial strategies to overcome the multifactorial resistance put forth by the GBM cell and its TME. This review discusses the contemporary and the investigational combinatorial strategies being employed to treat GBM and summarizes the evidence accumulated till date.


Glioblastoma is a form of brain tumor which typically leads to death in almost all patients. Over the last two decades, traditional treatment strategies such as surgery, radiotherapy and chemotherapy have been combined as standard therapy. Together, these aggressive treatment strategies have provided modest survival benefit with acceptable toxicity. However, relapse is the invariable norm resulting in death in the overwhelming majority of patients. Relapse occurs due to multiple factors such as inability of drugs to cross blood­brain barrier, immunosuppressive tumor microenvironment, stemness nature of glioma cells, tumor heterogeneity and enhanced hypoxia and angiogenic factors. Therefore, there is an urgent need to develop an innovative treatment approach to treat glioblastoma. Recently, several treatment strategies known as immunotherapies including CAR T cell therapy, dendritic cell vaccines, immune checkpoints blockade and oncolytic virus, nano particles and gene editing/silencing technology have demonstrated promising results in preclinical and few clinical trials. Furthermore, to increase the efficacy of these novel strategies, combinatorial approaches are being implemented for the treatment. This includes CAR T cell therapy in combination with small molecules, immune checkpoint inhibitors and oncolytic virus and nanoparticles plus gene editing, silencing or immune checkpoints inhibitors. These treatments have shown exciting results in preclinical settings and few of these trials are in progress. The review summarizes these combinatorial novel approaches and discusses them in detail.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Oncolytic Virotherapy , Humans , Glioblastoma/drug therapy , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Immune Checkpoint Inhibitors , Oncolytic Virotherapy/methods , Immunotherapy/methods , Glioma/drug therapy , Tumor Microenvironment
8.
Front Immunol ; 13: 886546, 2022.
Article in English | MEDLINE | ID: mdl-35677038

ABSTRACT

Chimeric antigen receptor T cell (CAR-T) therapy demonstrated remarkable success in long-term remission of cancers and other autoimmune diseases. Currently, six products (Kymriah, Yescarta, Tecartus, Breyanzi, Abecma, and Carvykti) are approved by the US-FDA for treatment of a few hematological malignancies. All the six products are autologous CAR-T cell therapies, where delivery of CAR, which comprises of scFv (single-chain variable fragment) derived from monoclonal antibodies for tumor target antigen recognition is through a lentiviral vector. Although available CAR-T therapies yielded impressive response rates in a large number of patients in comparison to conventional treatment strategies, there are potential challenges in the field which limit their efficacy. One of the major challenges is the induction of humoral and/or cellular immune response in patients elicited due to scFv domain of CAR construct, which is of non-human origin in majority of the commercially available products. Generation of anti-CAR antibodies may lead to the clearance of the therapeutic CAR-T cells, increasing the likelihood of tumor relapse and lower the CAR-T cells efficacy upon reinfusion. These immune responses influence CAR-T cell expansion and persistence, that might affect the overall clinical response. In this review, we will discuss the impact of immunogenicity of the CAR transgene on treatment outcomes. Finally, this review will highlight the mitigation strategies to limit the immunogenic potential of CARs and improve the therapeutic outcome.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Neoplasm Recurrence, Local , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
9.
Pharmacol Ther ; 236: 108109, 2022 08.
Article in English | MEDLINE | ID: mdl-35007658

ABSTRACT

T cell lymphomas encompass a diverse group of Non-Hodgkin lymphomas with a wide spectrum of clinical, immunological and pathological manifestations. In the last two decades there has been a progress in our understanding of the cell of origin, genetic abnormalities and their impact on behaviour in T cell lymphomas. Genetic alterations are one of the critical drivers of the pathogenesis of T cell lymphoma. Disease progression has been correlated with multiple genetic abnormalities where malignant clones arise primarily out of the host immune surveillance arsenal. There are many cellular processes involved in disease development, and some of them are T cell signaling, differentiation, epigenetic modifications, and immune regulation. Modulation of these crucial pathways via genetic mutations and chromosomal abnormalities possessing either point or copy number mutations helps tumor cells to develop a niche favourable for their growth via metabolic alterations. Several metabolic pathways especially regulation of redox homeostasis is critical in pathogenesis of lymphoma. Disruption of redox potential and induction of oxidative stress renders malignant cells vulnerable to mitochondrial damage and triggers apoptotic pathways causing cell death. Targeting genetic abnormalities and oxidative stress along with current treatment regime have the potential for improved therapeutics and presents new combination approaches towards selective treatment of T cell lymphomas.


Subject(s)
Lymphoma, Non-Hodgkin , Lymphoma, T-Cell , Lymphoma , Humans , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/metabolism , Lymphoma, Non-Hodgkin/pathology , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/metabolism , Lymphoma, T-Cell/pathology , Mutation , Oxidative Stress
10.
J Immunol ; 206(11): 2740-2752, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34021045

ABSTRACT

IL-9 is produced by Th9 cells and is classically known as a growth-promoting cytokine. Although protumorigenic functions of IL-9 are described in T cell lymphoma, recently, we and others have reported anti-tumor activities of IL-9 in melanoma mediated by mast cells and CD8+ T cells. However, involvement of IL-9 in invasive breast and cervical cancer remains unexplored. In this study, we demonstrate IL-9-dependent inhibition of metastasis of both human breast (MDA-MB-231 and MCF-7) and cervical (HeLa) tumor cells in physiological three-dimensional invasion assays. To dissect underlying mechanisms of IL-9-mediated suppression of invasion, we analyzed IL-9-dependent pathways of cancer cell metastasis, including proteolysis, contractility, and focal adhesion dynamics. IL-9 markedly blocked tumor cell-collagen degradation, highlighting the effects of IL-9 on extracellular matrix remodeling. Moreover, IL-9 significantly reduced phosphorylation of myosin L chain and resultant actomyosin contractility and also increased focal adhesion formation. Finally, IL-9 suppressed IL-17- and IFN-γ-induced metastasis of both human breast (MDA-MB-231) and cervical (HeLa) cancer cells. In conclusion, IL-9 inhibits the metastatic potential of breast and cervical cancer cells by controlling extracellular matrix remodeling and cellular contractility.


Subject(s)
Breast Neoplasms/immunology , Extracellular Matrix/immunology , Interleukin-9/immunology , Breast Neoplasms/pathology , Cell Adhesion/immunology , Cell Movement/immunology , Female , Humans , Tumor Cells, Cultured
11.
Pigment Cell Melanoma Res ; 34(5): 966-972, 2021 09.
Article in English | MEDLINE | ID: mdl-33834624

ABSTRACT

Immune dysregulation is critical in vitiligo pathogenesis. Although the presence and roles of numerous CD4+ T-cell subsets have been described, the presence of Th9 cells and more importantly, roles of IL-9 on melanocyte functions are not explored yet. Here, we quantified the T helper cell subsets including Th9 cells in vitiligo patients by multicolor flowcytometry. There was an increased frequency of skin-homing (CLA+ ) and systemic (CLA- ) Th9 cells in vitiligo patients compared to healthy donors. However, there was no difference in Th9 cell frequency in vitiligo patients with early and chronic disease. There was negligible IL-9 receptor (IL-9R) expression on human primary melanocytes (HPMs); however, IFNγ upregulated IL-9R expression on HPMs. Functionally, IL-9/IL-9R signaling reduced the production of IFNγ-induced toxic reactive oxygen species (ROS) in HPMs. There was no effect of IL-9 on expression of genes responsible for melanosome formation (MART1, TYRP1, and DCT), melanin synthesis (TYR), and melanocyte-inducing transcription factor (MITF) in HPMs. In conclusion, this study identifies the presence of Th9 cells in vitiligo and their roles in reducing the oxidative stress of melanocytes, which might be useful in designing effective therapeutics.


Subject(s)
Gene Expression Regulation/immunology , Interleukin-9/immunology , Melanocytes/immunology , Skin/immunology , T-Lymphocytes, Helper-Inducer/immunology , Vitiligo/immunology , Adult , Humans , Male , Melanocytes/pathology , Middle Aged , Receptors, Interleukin-9/immunology , Skin/pathology , T-Lymphocytes, Helper-Inducer/pathology , Vitiligo/pathology
12.
J Invest Dermatol ; 141(8): 1932-1942, 2021 08.
Article in English | MEDLINE | ID: mdl-33667432

ABSTRACT

IL-9‒producing T cells are present in healthy skin as well as in the cutaneous lesions of inflammatory diseases and cancers. However, the roles of IL-9 in human skin during homeostasis and in the pathogenesis of inflammatory disorders remain obscure. In this study, we examined the roles of IL-9 in metabolic reprogramming of human primary keratinocytes (KCs). High-throughput quantitative proteomics revealed that IL-9 signaling in human primary KCs disrupts the electron transport chain by downregulating multiple electron transport chain proteins. Nuclear magnetic resonance-based metabolomics showed that IL-9 also reduced the production of tricarboxylic acid cycle intermediates in human primary KCs. An integration of multiomics data with systems-level analysis using the constraint-based MitoCore model predicted marked IL-9-dependent effects on central carbohydrate metabolism, particularly in relation to the glycolytic switch. Stable isotope metabolomics and biochemical assays confirmed increased glucose consumption and redirection of metabolic flux toward lactate by IL-9. Functionally, IL-9 inhibited ROS production by IFN-γ and promoted human primary KC survival by inhibiting apoptosis. In conclusion, our data reveal IL-9 as a master regulator of KC metabolic reprogramming and survival.


Subject(s)
Citric Acid Cycle , Glycolysis , Interleukin-9/metabolism , Keratinocytes/metabolism , Apoptosis , Cell Survival , High-Throughput Screening Assays/methods , Humans , Interferon-gamma/metabolism , Oxidative Phosphorylation , Primary Cell Culture , Proteomics , Reactive Oxygen Species/metabolism , Systems Biology
13.
Mol Cancer Ther ; 20(5): 846-858, 2021 05.
Article in English | MEDLINE | ID: mdl-33632869

ABSTRACT

Recent studies have described the remarkable clinical outcome of anti-CD19 chimeric antigen receptor (CAR) T cells in treating B-cell malignancies. However, over 50% of patients develop life-threatening toxicities associated with cytokine release syndrome which may limit its utilization in low-resource settings. To mitigate the toxicity, we designed a novel humanized anti-CD19 CAR T cells by humanizing the framework region of single-chain variable fragment (scFv) derived from a murine FMC63 mAb and combining it with CD8α transmembrane domain, 4-1BB costimulatory domain, and CD3ζ signaling domain (h1CAR19-8BBζ). Docking studies followed by molecular dynamics simulation revealed that the humanized anti-CD19 scFv (h1CAR19) establishes higher binding affinity and has a flexible molecular structure with CD19 antigen compared with murine scFv (mCAR19). Ex vivo studies with CAR T cells generated from healthy donors and patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL) expressing either h1CAR19 or mCAR19 showed comparable antitumor activity and proliferation. More importantly, h1CAR19-8BBζ T cells produced lower levels of cytokines (IFNγ, TNFα) upon antigen encounter and reduced the induction of IL6 cytokine from monocytes than mCAR19-8BBζ T cells. There was a comparable proliferation of h1CAR19-8BBζ T cells and mCAR19-8BBζ T cells upon repeated antigen encounter. Finally, h1CAR19-8BBζ T cells efficiently eliminated NALM6 tumor cells in a preclinical model. In conclusion, the distinct structural modification in CAR design confers the novel humanized anti-CD19 CAR with a favorable balance of efficacy to toxicity providing a rationale to test this construct in a phase I trial.


Subject(s)
Antigens, CD19/metabolism , Cytokines/metabolism , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Humans , Mice
14.
Mol Cancer Res ; 18(4): 657-668, 2020 04.
Article in English | MEDLINE | ID: mdl-31996468

ABSTRACT

Immune dysfunction is critical in pathogenesis of cutaneous T-cell lymphoma (CTCL). Few studies have reported abnormal cytokine profile and dysregulated T-cell functions during the onset and progression of certain types of lymphoma. However, the presence of IL9-producing Th9 cells and their role in tumor cell metabolism and survival remain unexplored. With this clinical study, we performed multidimensional blood endotyping of CTCL patients before and after standard photo/chemotherapy and revealed distinct immune hallmarks of the disease. Importantly, there was a higher frequency of "skin homing" Th9 cells in CTCL patients with early (T1 and T2) and advanced-stage disease (T3 and T4). However, advanced-stage CTCL patients had severely impaired frequency of skin-homing Th1 and Th17 cells, indicating attenuated immunity. Treatment of CTCL patients with standard photo/chemotherapy decreased the skin-homing Th9 cells and increased the Th1 and Th17 cells. Interestingly, T cells of CTCL patients express IL9 receptor (IL9R), and there was negligible IL9R expression on T cells of healthy donors. Mechanistically, IL9/IL9R interaction on CD3+ T cells of CTCL patients and Jurkat cells reduced oxidative stress, lactic acidosis, and apoptosis and ultimately increased their survival. In conclusion, coexpression of IL9 and IL9R on T cells in CTCL patients indicates the autocrine-positive feedback loop of Th9 axis in promoting the survival of malignant T cells by reducing the oxidative stress. IMPLICATIONS: The critical role of Th9 axis in CTCL pathogenesis indicates that strategies targeting Th9 cells might harbor significant potential in developing robust CTCL therapy.


Subject(s)
Cell Survival/genetics , Interleukin-9/metabolism , Lymphoma, T-Cell, Cutaneous/immunology , Female , Humans , Male , Oxidative Stress
15.
Expert Rev Proteomics ; 17(11-12): 797-812, 2020.
Article in English | MEDLINE | ID: mdl-33491499

ABSTRACT

INTRODUCTION: Proteogenomic techniques find applications in identifying novel cancer-specific peptides called neoantigens; they are non-self peptides derived from tumor-specific non-synonymous mutations. These peptides with MHCs are recognized by the T cells and induce an antitumor response. Due to their selective expression of tumor cells, neoantigens are considered attractive targets for cancer immunotherapy. AREAS COVERED: In this review, we have discussed the proteogenomic strategies to identify neoantigens. We have also provided a neoantigen identification pipeline using data from whole-exome sequencing, RNA sequencing, and MHC peptidomics. Further, we have reviewed recent tools for neoantigen discovery. EXPERT COMMENTARY: The limitations in instrument sensitivity and availability of bioinformatics tools have restricted the identification of neoantigens from tumor samples. Nonetheless, the recent improvement in genome sequencing, mass spectrometry technologies, and the development of reliable algorithms for epitope prediction provide hope for efficient identification of neoantigens. Translating this workflow on patient samples would represent a massive advancement in neoantigen identification methods, leading to the constitution of novel personalized neoantigen cancer vaccines.


Subject(s)
Antigens, Neoplasm , Immunotherapy , Neoplasms/immunology , Proteogenomics , Humans , Mass Spectrometry , Neoplasms/therapy , T-Lymphocytes
16.
Sci Rep ; 9(1): 19930, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882703

ABSTRACT

Actomyosin contractility, crucial for several physiological processes including migration, is controlled by the phosphorylation of myosin light chain (MLC). Rho-associated protein kinase (ROCK) and Myosin light chain kinase (MLCK) are predominant kinases that phosphorylate MLC. However, the distinct roles of these kinases in regulating actomyosin contractility and their subsequent impact on the migration of healthy and malignant skin cells is poorly understood. We observed that blockade of ROCK in healthy primary keratinocytes (HPKs) and epidermal carcinoma cell line (A-431 cells) resulted in loss of migration, contractility, focal adhesions, stress fibres, and changes in morphology due to reduction in phosphorylated MLC levels. In contrast, blockade of MLCK reduced migration, contractile dynamics, focal adhesions and phosphorylated MLC levels of HPKs alone and had no effect on A-431 cells due to the negligible MLCK expression. Using genetically modified A-431 cells expressing phosphomimetic mutant of p-MLC, we show that ROCK dependent phosphorylated MLC controls the migration, focal adhesion, stress fibre organization and the morphology of the cells. In conclusion, our data indicate that ROCK is the major kinase of MLC phosphorylation in both HPKs and A-431 cells, and regulates the contractility and migration of healthy as well as malignant skin epithelial cells.


Subject(s)
Actomyosin/metabolism , Cell Movement/physiology , rho-Associated Kinases/metabolism , Actin Cytoskeleton/metabolism , Actomyosin/physiology , Cell Adhesion/physiology , Cell Line, Tumor , Epidermis/metabolism , Epithelial Cells/metabolism , Epithelial Cells/physiology , Focal Adhesions/metabolism , Humans , Keratinocytes/metabolism , Keratinocytes/physiology , Muscle Contraction/physiology , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/metabolism , Myosin-Light-Chain Phosphatase/metabolism , Phosphorylation , Skin/metabolism , Stress Fibers/metabolism , rho-Associated Kinases/physiology
17.
RSC Adv ; 9(18): 10174-10183, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-31304009

ABSTRACT

High numbers of autologous human primary keratinocytes (HPKs) are required for patients with burns, wounds and for gene therapy of skin disorders. Although freshly isolated HPKs exhibit a robust regenerative capacity, traditional methodology fails to provide a sufficient number of cells. Here we demonstrated a well characterized, non-cytotoxic and inert hydrogel as a substrate that mimics skin elasticity, which can accelerate proliferation and generate higher numbers of HPKs compared to existing tissue culture plastic (TCP) dishes. More importantly, this novel method was independent of feeder layer or any exogenous pharmaceutical drug. The HPKs from the hydrogel-substrate were functional as demonstrated by wound-healing assay, and the expression of IFN-γ-responsive genes (CXCL10, HLADR). Importantly, gene delivery efficiency by a lentiviral based delivery system was significantly higher in HPKs cultured on hydrogels compared with TCP. In conclusion, our study provides the first evidence that cell-material mechanical interaction is enough to provide a rapid expansion of functional keratinocytes that might be used as autologous grafts for skin disorders.

18.
Front Immunol ; 10: 401, 2019.
Article in English | MEDLINE | ID: mdl-30906295

ABSTRACT

[This corrects the article DOI: 10.3389/fimmu.2018.03180.].

19.
J Immunol ; 202(7): 1949-1961, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30760620

ABSTRACT

T cells mediate skin immune surveillance by secreting specific cytokines and regulate numerous functions of keratinocytes, including migration during homeostasis and disease pathogenesis. Keratinocyte migration is mediated mainly by proteolytic cleavage of the extracellular matrix and/or by cytoskeleton reorganization. However, the cross-talk between T cell cytokines and actomyosin machinery of human primary keratinocytes (HPKs), which is required for cytoskeleton reorganization and subsequent migration, remains poorly examined. In this study, we describe that IL-9 profoundly reduced the actin stress fibers, inhibited contractility, and reduced the cortical stiffness of HPKs, which resulted in inhibition of the migration potential of HPKs in an adhesion- and MMP-independent manner. Similarly, IL-9 inhibited the IFN-γ-induced migration of HPKs by inhibiting the actomyosin machinery (actin stress fibers, contractility, and stiffness). IL-17A increased the actin stress fibers, promoted cellular contractility, and increased proteolytic collagen degradation, resulting in increased migration potential of HPKs. However, IL-9 inhibited the IL-17A-mediated HPKs migration. Mechanistically, IL-9 inhibited the IFN-γ- and IL-17A-induced phosphorylation of myosin L chain in HPKs, which is a major regulator of the actomyosin cytoskeleton. Finally, in addition to HPKs, IL-9 inhibited the migration of A-431 cells (epidermoid carcinoma cells) induced either by IFN-γ or IL-17A. In conclusion, our data demonstrate the influence of T cell cytokines in differentially regulating the actomyosin cytoskeleton and migration potential of human keratinocytes, which may have critical roles in skin homeostasis and pathogenesis of inflammatory diseases as well as skin malignancies.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Movement/physiology , Interleukin-17/metabolism , Interleukin-9/metabolism , Keratinocytes/metabolism , Actin Cytoskeleton/immunology , Humans , Interleukin-17/immunology , Interleukin-9/immunology , Keratinocytes/immunology , Skin/immunology , Skin/metabolism
20.
Front Immunol ; 9: 3180, 2018.
Article in English | MEDLINE | ID: mdl-30713539

ABSTRACT

Lymphocytes especially autologous T cells have been used for the treatment of numerous indications including cancers, autoimmune disorders and infectious diseases. Very recently, FDA approved Chimeric Antigen Receptor T cells (CAR T cells) therapy for relapse and refractory CD19+ B cell acute lymphoblastic leukemia (r/r B-ALL) and r/r diffuse large B cell lymphoma (r/r DLBCL) upon their remarkable success in multiple Phase I-II clinical trials. While CAR T cells are considered as major breakthrough in the field of cancer immunotherapy, the regulation of CAR T cells remains poorly understood. In this review we will discuss the strategies that regulate the CAR T cells efficacy and persistence with focus on roles of different structural component of CAR construct. Different domains of CAR construct, for example, antigen binding domain, hinge, transmembrane, and signaling domain as well as immune-regulatory cytokines have significant impact on CAR T cell efficacy. Finally, this review will highlight the strategies that will promote CAR T cells efficacy and will reduce the toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL