Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 870: 161931, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36736402

ABSTRACT

Juncus acutus has been proposed as a suitable species for the design of phytoremediation plans. This research aimed to investigate the role played by rhizosphere minerals and water composition on Zn transformations and dynamics in the rhizosphere-plant system of J. acutus exposed to different Zn sources. Rhizobox experiments were conducted using three different growing substrates (Zn from 137 to 20,400 mg/kg), and two irrigation lines (Zn 0.05 and 180 mg/l). The plant growth was affected by the substrate type, whereas the Zn content in the water did not significantly influence the plant height for a specific substrate. J. acutus accumulated Zn mainly in roots (up to 10,000 mg/kg dw); the metal supply by the water led to variable increases in the total Zn concentration in the vegetal organs, and different Zn distributions both controlled by the rhizosphere mineral composition. Different Zn complexation mechanisms were observed, mainly driven by cysteine and citrate compounds, whose amount increased linearly with Zn content in water, but differently for each of the investigated systems. Our study contributes to gain a more complete picture of the Zn pathway in the rhizosphere-plant system of J. acutus. We demonstrated that this vegetal species is not only capable of developing site-specific tolerance mechanisms, but it is also capable to differently modulate Zn transformation when Zn is additionally supplied by watering. These findings are necessary for predicting the fate of Zn during phytoremediation of sites characterized by specific mineralogical properties and subject to water chemical variations.


Subject(s)
Metals , Soil Pollutants , Metals/analysis , Plants/metabolism , Biodegradation, Environmental , Minerals/analysis , Zinc/analysis , Water/analysis , Plant Roots/metabolism , Soil Pollutants/analysis , Rhizosphere
2.
J Hazard Mater ; 370: 98-107, 2019 05 15.
Article in English | MEDLINE | ID: mdl-28847413

ABSTRACT

Juncus acutus, an halophite plant pioneer in extremely polluted mine areas, was harvested in three different locations of Sardinia (Italy), having Zn soil concentration up to 80g/kg, and Zn water concentration ranging between 10-3g/L and 10-1g/L. Rhizosphere and plant samples were investigated combining X-ray microscopy (XM)/spectroscopy (XAFS) and infrared microspectroscopy (FTIR) to elucidate the chemical composition, (bio)mineralogy and Zn coordinative environment. The multi-technique approach allowed recognizing different biomineralization processes, and Zn complexes in the plant tissues. The Zn chemical environment in root biominerals is multi-phase and, depending on the sampling site, can comprise amorphous Zn silicate, Zn apatite, hydrozincite, and Zn sulphate. Zn cysteine and Zn histidine, complexes quoted as part of a detoxification strategy, were found mainly in plants from the site where the Zn water concentration has the highest values. This different site-specific mode of Zn biomineralization has relevant implications for phytoremediation techniques and for further biotechnology development, which can be better designed and developed after knowledge of site-specific-molecular processes ruling mineral evolution and biomineralization. Carboxylic groups and organic compounds (lignin, cellulose, hemicellulose, pectin and esters) were identified by FTIR analysis, thought the Zn speciation is not apparently linked to these carboxylic group rich biopolymers.


Subject(s)
Magnoliopsida/metabolism , Soil Pollutants/metabolism , Zinc Compounds/metabolism , Zinc/metabolism , Biomineralization , Italy , Mining , Plant Roots/metabolism , Plant Stems/metabolism , Rhizosphere
SELECTION OF CITATIONS
SEARCH DETAIL
...