Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Science ; 371(6533): 1056-1059, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33602865

ABSTRACT

Frontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. We measured the full momentum-space distribution of transiently excited electrons, connecting their excited-state dynamics to real-space excitation pathways. Because in molecules this distribution is closely linked to orbital shapes, our experiment may, in the future, offer the possibility of observing ultrafast electron motion in time and space.

2.
J Phys Chem Lett ; 8(1): 208-213, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27935313

ABSTRACT

Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations.

3.
Nat Commun ; 6: 8287, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26437297

ABSTRACT

Recently, it has been shown that experimental data from angle-resolved photoemission spectroscopy on oriented molecular films can be utilized to retrieve real-space images of molecular orbitals in two dimensions. Here, we extend this orbital tomography technique by performing photoemission initial state scans as a function of photon energy on the example of the brickwall monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on Ag(110). The overall dependence of the photocurrent on the photon energy can be well accounted for by assuming a plane wave for the final state. However, the experimental data, both for the highest occupied and the lowest unoccupied molecular orbital of PTCDA, exhibits an additional modulation attributed to final state scattering effects. Nevertheless, as these effects beyond a plane wave final state are comparably small, we are able, with extrapolations beyond the attainable photon energy range, to reconstruct three-dimensional images for both orbitals in agreement with calculations for the adsorbed molecule.

4.
Phys Chem Chem Phys ; 17(3): 1530-48, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25475998

ABSTRACT

What do energy level alignments at metal-organic interfaces reveal about the metal-molecule bonding strength? Is it permissible to take vertical adsorption heights as indicators of bonding strengths? In this paper we analyse 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on the three canonical low index Ag surfaces to provide exemplary answers to these questions. Specifically, we employ angular resolved photoemission spectroscopy for a systematic study of the energy level alignments of the two uppermost frontier states in ordered monolayer phases of PTCDA. Data are analysed using the orbital tomography approach. This allows the unambiguous identification of the orbital character of these states, and also the discrimination between inequivalent species. Combining this experimental information with DFT calculations and the generic Newns-Anderson chemisorption model, we analyse the alignments of highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) with respect to the vacuum levels of bare and molecule-covered surfaces. This reveals clear differences between the two frontier states. In particular, on all surfaces the LUMO is subject to considerable bond stabilization through the interaction between the molecular π-electron system and the metal, as a consequence of which it also becomes occupied. Moreover, we observe a larger bond stabilization for the more open surfaces. Most importantly, our analysis shows that both the orbital binding energies of the LUMO and the overall adsorption heights of the molecule are linked to the strength of the chemical interaction between the molecular π-electron system and the metal, in the sense that stronger bonding leads to shorter adsorption heights and larger orbital binding energies.

5.
J Phys Condens Matter ; 25(31): 315501, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23835492

ABSTRACT

We have carried out a theoretical and experimental investigation of the beryllium K-edge soft x-ray absorption fine structure of beryllium compounds in the oxygen group, considering BeO, BeS, BeSe, and BeTe. Theoretical spectra are obtained ab initio, through many-body perturbation theory, by solving the Bethe-Salpeter equation (BSE), and by supercell calculations using the core-hole approximation. All calculations are performed with the full-potential linearized augmented plane-wave method. It is found that the two different theoretical approaches produce a similar fine structure, in good agreement with the experimental data. Using the BSE results, we interpret the spectra, distinguishing between bound core-excitons and higher energy excitations.


Subject(s)
Beryllium/chemistry , Chalcogens/chemistry , Quantum Theory , X-Ray Absorption Spectroscopy
6.
Nat Commun ; 4: 1514, 2013.
Article in English | MEDLINE | ID: mdl-23443542

ABSTRACT

Charge carrier mobilities in molecular condensates are usually small, as the coherent transport, which is highly effective in conventional semiconductors, is impeded by disorder and the small intermolecular coupling. A significant band dispersion can usually only be observed in exceptional cases such as for π-stacking of aromatic molecules in organic single crystals. Here based on angular resolved photoemission, we demonstrate on the example of planar π-conjugated molecules that the hybridization with a metal substrate can substantially increase the delocalization of the molecular states in selective directions along the surface. Supported by ab initio calculations we show how this mechanism couples the individual molecules within the organic layer resulting in an enhancement of the in-plane charge carrier mobility.

7.
Phys Rev Lett ; 104(23): 233004, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20867234

ABSTRACT

We demonstrate the application of orbital k-space tomography for the analysis of the bonding occurring at metal-organic interfaces. Using angle-resolved photoelectron spectroscopy, we probe the spatial structure of the highest occupied molecular orbital and the former lowest unoccupied molecular orbital (LUMO) of one monolayer 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride (PTCDA) on Ag(110) and (111) surfaces and, in particular, the influence of the hybridization between the orbitals and the electronic states of the substrate. We are able to quantify and localize the substrate contribution to the LUMO and thus prove the metal-molecule hybrid character of this complex state.

8.
J Phys Condens Matter ; 21(10): 104205, 2009 Mar 11.
Article in English | MEDLINE | ID: mdl-21817425

ABSTRACT

We obtain x-ray absorption near-edge structures (XANES) by solving the equation of motion for the two-particle Green's function for the electron-hole pair, the Bethe-Salpeter equation (BSE), within the all-electron full-potential linearized augmented plane wave method (FPLAPW). The excited states are calculated for the Li K-edge in the insulating solids LiF, Li(2)O and Li(2)S, and absorption spectra are compared with independent particle results using the random phase approximation (RPA), as well as supercell calculations using the core-hole approximation within density functional theory (DFT). The binding energies of strongly bound excitations are determined in the materials, and core-exciton wavefunctions are demonstrated for LiF.

9.
Science ; 317(5836): 351-5, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17641196

ABSTRACT

The high crystallinity of many inorganic materials allows their band structures to be determined through angle-resolved photoemission spectroscopy (ARPES). Similar studies of conjugated organic molecules of interest in optoelectronics are often hampered by difficulties in growing well-ordered and well-oriented crystals or films. We have grown crystalline films of uniaxially oriented sexiphenyl molecules and obtained ARPES data. Supported by density-functional calculations, we show that, in the direction parallel to the principal molecular axis, a quasi-one-dimensional band structure of a system of well-defined finite size develops out of individual molecular orbitals. In contrast, perpendicular to the molecules, the band structure reflects the periodicity of the molecular crystal, and continuous bands with a large dispersion were observed.

10.
Phys Rev Lett ; 85(11): 2388-91, 2000 Sep 11.
Article in English | MEDLINE | ID: mdl-10978017

ABSTRACT

We present a combined experimental/theoretical study of the electronic properties of conjugated para-phenylene type molecules under high pressure up to 80 kbar. Pressure is used as a tool to vary the molecular geometry and intermolecular interaction. The influence of the latter two on singlet and triplet excitons as well as polarons is monitored via optical spectroscopy. We have performed band structure calculations for the planar poly(para-phenylene) and calculated the dielectric function. By varying the intermolecular distances and the length of the polymer repeat unit the observed pressure effects can be explained.

SELECTION OF CITATIONS
SEARCH DETAIL
...