Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
ACS Chem Neurosci ; 15(11): 2132-2143, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38743904

ABSTRACT

Element dysregulation is a pathophysiologic hallmark of ischemic stroke. Prior characterization of post-stroke element dysregulation in the photothrombotic model demonstrated significant element changes for ions that are essential for the function of the neurovascular unit. To characterize the dynamic changes during the early hyperacute phase (<6 h), we employed a temporary large-vessel occlusion stroke model. The middle cerebral artery was temporarily occluded for 30 min in male C57BL/6 mice, and coronal brain sections were prepared for histology and X-ray fluorescence microscopy from 5 to 120 min post-reperfusion. Ion dysregulation was already apparent by 5 min post-reperfusion, evidenced by reduced total potassium in the lesion. Later time points showed further dysregulation of phosphorus, calcium, copper, and zinc. By 60 min post-reperfusion, the central portion of the lesion showed pronounced element dysregulation and could be differentiated from a surrounding region of moderate dysregulation. Despite reperfusion, the lesion continued to expand dynamically with increasing severity of element dysregulation throughout the time course. Given that the earliest time point investigated already demonstrated signs of ion disruption, we anticipate such changes may be detectable even earlier. The profound ion dysregulation at the tissue level after reperfusion may contribute to hindering treatments aimed at functional recovery of the neurovascular unit.


Subject(s)
Infarction, Middle Cerebral Artery , Mice, Inbred C57BL , Animals , Male , Mice , Infarction, Middle Cerebral Artery/metabolism , Homeostasis/physiology , Stroke/metabolism , Calcium/metabolism , Disease Models, Animal , Zinc/metabolism , Brain/metabolism , Brain/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Potassium/metabolism , Copper/metabolism , Ions/metabolism
2.
J Inorg Biochem ; 253: 112480, 2024 04.
Article in English | MEDLINE | ID: mdl-38309203

ABSTRACT

Amyloid beta (Aß) peptides and copper (Cu) ions are each involved in critical biological processes including antimicrobial activity, regulation of synaptic function, angiogenesis, and others. Aß binds to Cu and may play a role in Cu trafficking. Aß peptides exist in isoforms that vary at their C-and N-termini; variation at the N-terminal sequence affects Cu binding affinity, structure, and redox activity by providing different sets of coordinating groups to the metal ion. Several N-terminal isoforms have been detected in human brain tissues including Aß1-40/42, Aß3-42, pEAß3-42, Aß4-42, Aß11-40 and pEAß11-40 (where pE denotes an N-terminal pyroglutamic acid). Several previous works have individually investigated the affinity and structure of Cu(I) bound to some of these isoforms' metal binding domains. However, the disparately reported values are apparent constants collected under different sets of conditions, and thus an integrated comparison cannot be made. The work presented here provides the Cu(I) coordination structure and binding affinities of these six biologically relevant Aß isoforms determined in parallel using model peptides of the Aß metal binding domains (Aß1-16, Aß3-16, pEAß3-16, Aß4-16, Aß11-16 and pEAß11-16). The binding affinities of Cu(I)-Aß complexes were measured using solution competition with ferrozine (Fz) and bicinchoninic acid (BCA), two colorimetric Cu(I) indicators in common use. The Cu(I) coordination structures were characterized by X-ray absorption spectroscopy. The data presented here facilitate comparison of the isoforms' Cu-binding interactions and contribute to our understanding of the role of Aß peptides as copper chelators in healthy and diseased brains.


Subject(s)
Amyloid beta-Peptides , Copper , Humans , Amyloid beta-Peptides/chemistry , Copper/chemistry , Protein Isoforms , Ions , Chelating Agents
3.
Biochim Biophys Acta Biomembr ; 1866(3): 184287, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266967

ABSTRACT

Stroke represents a core area of study in neurosciences and public health due to its global contribution toward mortality and disability. The intricate pathophysiology of stroke, including ischemic and hemorrhagic events, involves the interruption in oxygen and nutrient delivery to the brain. Disruption of these crucial processes in the central nervous system leads to metabolic dysregulation and cell death. Fourier transform infrared (FTIR) spectroscopy can simultaneously measure total protein and lipid content along with a number of key biomarkers within brain tissue that cannot be observed using conventional techniques. FTIR imaging provides the opportunity to visualize this information in tissue which has not been chemically treated prior to analysis, thus retaining the spatial distribution and in situ chemical information. Here we present a review of FTIR imaging methods for investigating the biomarker responses in the post-stroke brain.


Subject(s)
Brain , Stroke , Humans , Spectroscopy, Fourier Transform Infrared/methods , Fourier Analysis , Stroke/diagnostic imaging , Biomarkers
4.
bioRxiv ; 2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37034764

ABSTRACT

Ischemic stroke is a leading cause of death and disability, as therapeutic options for mitigating the long-term deficits precipitated by the event remain limited. Acute administration of the neuroendocrine modulator insulin-like growth factor-1 (IGF-1) attenuates ischemic stroke damage in preclinical models, and clinical studies suggest IGF-1 can reduce the risk of stroke and improve overall outcomes. The cellular mechanism by which IGF-1 exerts this protection is poorly defined, as all cells within the neurovascular unit express the IGF-1 receptor. We hypothesize that the functional regulation of both neurons and astrocytes by IGF-1 is critical in minimizing damage in ischemic stroke. To test this, we utilized inducible astrocyte-specific or neuron-specific transgenic mouse models to selectively reduce IGF-1R in the adult mouse brain prior to photothrombotic stroke. Acute changes in blood brain barrier permeability, microglial activation, systemic inflammation, and biochemical composition of the brain were assessed 3 hours following photothrombosis, and significant protection was observed in mice deficient in neuronal and astrocytic IGF-1R. When the extent of tissue damage and sensorimotor dysfunction was assessed for 3 days following stroke, only the neurological deficit score continued to show improvements, and the extent of improvement was enhanced with additional IGF-1 supplementation. Overall, results indicate that neuronal and astrocytic IGF-1 signaling influences stroke damage but IGF-1 signaling within these individual cell types is not required for minimizing tissue damage or behavioral outcome.

5.
Inorg Chem ; 62(10): 4021-4034, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36826341

ABSTRACT

Human serum albumin (HSA) is the major copper (Cu) carrier in blood. The majority of previous studies that have investigated Cu interactions with HSA have focused primarily on the Cu(II) oxidation state. Yet, cellular Cu uptake by the human copper transport protein (Ctr1), a plasma membrane-embedded protein responsible for Cu uptake into cells, requires Cu(I). Recent in vitro work has determined that reducing agents, such as the ascorbate present in blood, are sufficient to reduce the Cu(II)HSA complex to form Cu(I)HSA and that Cu(I) is bound to HSA with pM affinity. The biological accessibility of Cu(I)HSA suggests that HSA-bound Cu(I) may be an unappreciated form of Cu cargo and a key player in extracellular Cu trafficking. To better understand Cu trafficking by HSA, we sought to investigate the exchange of Cu(I) from HSA to a model peptide of the Cu-binding ectodomain of Ctr1. In this study, we used X-ray absorption near-edge spectroscopy to show that Cu(I) becomes more highly coordinated as increasing amounts of the Ctr1-14 model peptide are added to a solution of Cu(I)HSA. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to further characterize the interaction of Cu(I)HSA with Ctr1-14 by determining the ligands coordinating Cu(I) and their bond lengths. The EXAFS data support that some Cu(I) likely undergoes complete transfer from HSA to Ctr1-14. This finding of HSA interacting with and releasing Cu(I) to an ectodomain model peptide of Ctr1 suggests a mechanism by which HSA delivers Cu(I) to cells under physiological conditions.


Subject(s)
Serum Albumin, Human , Serum Albumin , Humans , Serum Albumin, Human/metabolism , Peptides/chemistry , Biological Transport , Oxidation-Reduction , Copper/chemistry
6.
Inorg Chem ; 61(37): 14626-14640, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36073854

ABSTRACT

Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid ß (Aß) peptide is central to disease pathology, which is supported by elevated Aß levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aß, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aß(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aß(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aß(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aß(1-42) species in solution, leaving a single Cu(II)Aß(1-42) species. It follows that the Cu(II) site in this Cu(II)Aß(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aß(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aß(1-42).


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Clioquinol , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/chemistry , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Clioquinol/analogs & derivatives , Clioquinol/chemistry , Copper/chemistry , Humans , Ions , Metals , Oxyquinoline/chemistry , Oxyquinoline/pharmacology , Peptide Fragments , Solvents , Zinc
7.
Dalton Trans ; 51(27): 10361-10376, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35766122

ABSTRACT

Copper(II) coordination by bis(cyclohexanone)oxalyldihydrazone (also known as cuprizone), resulting in the formation of an intensely coloured blue complex, was first reported over 70 years ago. The cuprizone reaction has been employed in colourimetric tests for the presence of trace levels of copper. Cuprizone administration in C57BL/6 mice also leads to demyelination over time - a consequence that appears to be due to copper dyshomeostasis - and this has led to use of cuprizone as the leading method for toxicant-induced generation of an animal model of demyelination since its first use in the 1960s. Despite broad interest in cuprizone and its ability to bind copper there have been relatively few studies to structurally characterize the copper coordination properties of this ligand. In the absence of an aqueous medium, such as neat alcohol, copper and cuprizone exclusively form an amorphous green precipitate. Under aqueous conditions, where a large excess of cuprizone (relative to copper) is present, the blue complex that is synonymous with copper-cuprizone coordination is predominantly formed. The blue and green copper-cuprizone products demonstrate poor solubility and present challenges for conventional structure characterization methods, such as X-ray crystallography or nuclear magnetic resonance spectroscopy. By combining mass spectrometry, X-ray absorption spectroscopy, computational chemistry, and other techniques, a self-consistent picture of the copper coordination structures of the blue and green complexes is revealed - confirming that the blue complex is in the Cu(III) state, containing two hydrolyzed cuprizone ligands per metal centre, while the green complex represents an extended oligomeric complex, comprised of repeating Cu(II) centres that lie 4.8 Å apart and are bridged by unhydrolyzed cuprizone donors.


Subject(s)
Coordination Complexes , Demyelinating Diseases , Animals , Coordination Complexes/chemistry , Copper/chemistry , Crystallography, X-Ray , Cuprizone/adverse effects , Demyelinating Diseases/chemically induced , Ligands , Mice , Mice, Inbred C57BL , X-Ray Absorption Spectroscopy
8.
Dalton Trans ; 51(27): 10377-10391, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35766818

ABSTRACT

The reaction of copper with bis(cyclohexanone)oxaldihydrazone (cuprizone) is a challenging coordination chemistry problem that has confounded attempts at elucidation for the past 70 years. The product of the reaction, a blue copper complex, wherein the cuprizone ligand is hydrolyzed, has been the primary focus during its history. We have recently characterized an additional green multi-copper product which contains unhydrolyzed cuprizone, which only added to the mystery. Using density functional structure models and thermodynamic calculations we address several of the long-standing questions surrounding the copper-cuprizone reaction, as well as identify the likely reaction pathway that gives rise to the blue and green products. Cu(II)-induced asymmetric hydrolysis of the cuprizone ligand is essential for formation of the blue product, followed by a series of Cu(II)-induced deprotonation and coordination events, with complex formation terminating with hydrolyzed cuprizone tautomerization and intramolecular electron transfer, generating a pseudo-macrocyclic Cu(III) species. Alternatively, in the presence of excess Cu(II), or in non-aqueous solvents, a green multi-Cu(II) complex forms comprised of alternating Cu(II)-cuprizone units. Structure calculations are supported by experimental data and represent the most rigorous approach to-date toward understanding the complex solution chemistry of copper with cuprizone.


Subject(s)
Copper , Cuprizone , Computational Chemistry , Copper/chemistry , Ligands , Models, Molecular
9.
Metallomics ; 14(6)2022 06 23.
Article in English | MEDLINE | ID: mdl-35512669

ABSTRACT

Synchrotron-based X-ray fluorescence microscopy is a flexible tool for identifying the distribution of trace elements in biological specimens across a broad range of sample sizes. The technique is not particularly limited by sample type and can be performed on ancient fossils, fixed or fresh tissue specimens, and in some cases even live tissue and live cells can be studied. The technique can also be expanded to provide chemical specificity to elemental maps, either at individual points of interest in a map or across a large field of view. While virtually any sample type can be characterized with X-ray fluorescence microscopy, common biological sample preparation methods (often borrowed from other fields, such as histology) can lead to unforeseen pitfalls, resulting in altered element distributions and concentrations. A general overview of sample preparation and data-acquisition methods for X-ray fluorescence microscopy is presented, along with outlining the general approach for applying this technique to a new field of investigation for prospective new users. Considerations for improving data acquisition and quality are reviewed as well as the effects of sample preparation, with a particular focus on soft tissues. The effects of common sample pretreatment steps as well as the underlying factors that govern which, and to what extent, specific elements are likely to be altered are reviewed along with common artifacts observed in X-ray fluorescence microscopy data.


Subject(s)
Synchrotrons , Trace Elements , Microscopy, Fluorescence/methods , Prospective Studies , Spectrometry, X-Ray Emission/methods , X-Rays
10.
Analyst ; 146(11): 3516-3525, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33881057

ABSTRACT

Visualising direct biochemical markers of cell physiology and disease pathology at the sub-cellular level is an ongoing challenge in the biological sciences. A suite of microscopies exists to either visualise sub-cellular architecture or to indirectly view biochemical markers (e.g. histochemistry), but further technique developments and innovations are required to increase the range of biochemical parameters that can be imaged directly, in situ, within cells and tissue. Here, we report our continued advancements in the application of synchrotron radiation attenuated total reflectance Fourier transform infrared (SR-ATR-FTIR) microspectroscopy to study sub-cellular biochemistry. Our recent applications demonstrate the much needed capability to map or image directly sub-cellular protein aggregates within degenerating neurons as well as lipid inclusions within bacterial cells. We also characterise the effect of spectral acquisition parameters on speed of data collection and the associated trade-offs between a realistic experimental time frame and spectral/image quality. Specifically, the study highlights that the choice of 8 cm-1 spectral resolutions provide a suitable trade-off between spectral quality and collection time, enabling identification of important spectroscopic markers, while increasing image acquisition by ∼30% (relative to 4 cm-1 spectral resolution). Further, this study explores coupling a focal plane array detector with SR-ATR-FTIR, revealing a modest time improvement in image acquisition time (factor of 2.8). Such information continues to lay the foundation for these spectroscopic methods to be readily available for, and adopted by, the biological science community to facilitate new interdisciplinary endeavours to unravel complex biochemical questions and expand emerging areas of study.


Subject(s)
Protein Aggregates , Synchrotrons , Lipids , Proteins , Spectroscopy, Fourier Transform Infrared
11.
Biochim Biophys Acta Biomembr ; 1863(5): 183573, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33561476

ABSTRACT

Stroke is the second leading cause of death and the third leading cause of disability globally. Edema is a hallmark of stroke resulting from dysregulation of water homeostasis in the central nervous system (CNS) and plays the major role in stroke-associated morbidity and mortality. The overlap between cellular and vasogenic edema makes treating this condition complicated, and to date, there is no pathogenically oriented drug treatment for edema. Water balance in the brain is tightly regulated, primarily by aquaporin 4 (AQP4) channels, which are mainly expressed in perivascular astrocytic end-feet. Targeting AQP4 could be a useful therapeutic approach for treating brain edema; however, there is no approved drug for stroke treatment that can directly block AQP4. In this study, we demonstrate that the FDA-approved drug trifluoperazine (TFP) effectively reduces cerebral edema during the early acute phase in post-stroke mice using a photothrombotic stroke model. This effect was combined with an inhibition of AQP4 expression at gene and protein levels. Importantly, TFP does not appear to induce any deleterious changes on brain electrolytes or metabolic markers, including total protein or lipid levels. Our results support a possible role for TFP in providing a beneficial extra-osmotic effect on brain energy metabolism, as indicated by the increase of glycogen levels. We propose that targeting AQP4-mediated brain edema using TFP is a viable therapeutic strategy during the early and acute phase of stroke that can be further investigated during later stages to help in developing novel CNS edema therapies.


Subject(s)
Aquaporin 4/metabolism , Biomarkers/metabolism , Brain/metabolism , Stroke/drug therapy , Trifluoperazine/therapeutic use , Animals , Aquaporin 4/genetics , Disease Models, Animal , Glycogen/chemistry , Glycogen/metabolism , Male , Mice , Mice, Inbred BALB C , Protein Aggregates , Stroke/metabolism
12.
Ann Neurol ; 89(3): 498-510, 2021 03.
Article in English | MEDLINE | ID: mdl-33244761

ABSTRACT

OBJECTIVE: Multiple sclerosis (MS) is a heterogeneous inflammatory demyelinating disease. Iron distribution is altered in MS patients' brains, suggesting iron liberation within active lesions amplifies demyelination and neurodegeneration. Whether the amount and distribution of iron are similar or different among different MS immunopatterns is currently unknown. METHODS: We used synchrotron X-ray fluorescence imaging, histology, and immunohistochemistry to compare the iron quantity and distribution between immunopattern II and III early active MS lesions. We analyzed archival autopsy and biopsy tissue from 21 MS patients. RESULTS: Immunopattern II early active lesions contain 64% more iron (95% confidence interval [CI] = 17-127%, p = 0.004) than immunopattern III lesions, and 30% more iron than the surrounding periplaque white matter (95% CI = 3-64%, p = 0.03). Iron in immunopattern III lesions is 28% lower than in the periplaque white matter (95% CI = -40 to -14%, p < 0.001). When normalizing the iron content of early active lesions to that of surrounding periplaque white matter, the ratio is significantly higher in immunopattern II (p < 0.001). Microfocused X-ray fluorescence imaging shows that iron in immunopattern II lesions localizes to macrophages, whereas macrophages in immunopattern III lesions contain little iron. INTERPRETATION: Iron distribution and content are heterogeneous in early active MS lesions. Iron accumulates in macrophages in immunopattern II, but not immunopattern III lesions. This heterogeneity in the two most common MS immunopatterns may be explained by different macrophage polarization, origin, or different demyelination mechanisms, and paves the way for developing new or using existing iron-sensitive magnetic resonance imaging techniques to differentiate among immunopatterns in the general nonbiopsied MS patient population. ANN NEUROL 2021;89:498-510.


Subject(s)
Brain/metabolism , Iron/metabolism , Multiple Sclerosis/metabolism , Adolescent , Adult , Aged , Apoferritins/metabolism , Apoptosis , Brain/immunology , Brain/pathology , Child , Complement System Proteins/metabolism , Female , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Humans , Immunoglobulins/metabolism , Immunohistochemistry , Macrophages/metabolism , Male , Middle Aged , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Myelin Proteins/metabolism , Myelin-Associated Glycoprotein/metabolism , Oligodendroglia/metabolism , Optical Imaging , Spectrometry, X-Ray Emission , Synchrotrons , Young Adult
13.
Inorg Chem ; 59(23): 16952-16966, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33211469

ABSTRACT

Amyloid beta (Aß) peptides are notorious for their involvement in Alzheimer's disease (AD), by virtue of their propensity to aggregate to form oligomers, fibrils, and eventually plaques in the brain. Nevertheless, they appear to be essential for correct neurophysiology on the synaptic level and may have additional functions including antimicrobial activity, sealing the blood-brain barrier, promotion of recovery from brain injury, and even tumor suppression. Aß peptides are also avid copper chelators, and coincidentally copper is significantly dysregulated in the AD brain. Copper (Cu) is released in significant amounts during calcium signaling at the synaptic membrane. Aß peptides may have a role in maintaining synaptic Cu homeostasis, including as a scavenger for redox-active Cu and as a chaperone for clearing Cu from the synaptic cleft. Here, we employed the Aß1-16 and Aß4-16 peptides as well-established non-aggregating models of major Aß species in healthy and AD brains, and the Ctr1-14 peptide as a model for the extracellular domain of the human cellular copper transporter protein (Ctr1). With these model peptides and a number of spectroscopic techniques, we investigated whether the Cu complexes of Aß peptides could provide Ctr1 with either Cu(II) or Cu(I). We found that Aß1-16 fully and rapidly delivered Cu(II) to Ctr1-14 along the affinity gradient. Such delivery was only partial for the Aß4-16/Ctr1-14 pair, in agreement with the higher complex stability for the former peptide. Moreover, the reaction was very slow and took ca. 40 h to reach equilibrium under the given experimental conditions. In either case of Cu(II) exchange, no intermediate (ternary) species were present in detectable amounts. In contrast, both Aß species released Cu(I) to Ctr1-14 rapidly and in a quantitative fashion, but ternary intermediate species were detected in the analysis of XAS data. The results presented here are the first direct evidence of a Cu(I) and Cu(II) transfer between the human Ctr1 and Aß model peptides. These results are discussed in terms of the fundamental difference between the peptides' Cu(II) complexes (pleiotropic ensemble of open structures of Aß1-16 vs the rigid closed-ring system of amino-terminal Cu/Ni binding Aß4-16) and the similarity of their Cu(I) complexes (both anchored at the tandem His13/His14, bis-His motif). These results indicate that Cu(I) may be more feasible than Cu(II) as the cargo for copper clearance from the synaptic cleft by Aß peptides and its delivery to Ctr1. The arguments in favor of Cu(I) include the fact that cellular Cu export and uptake proteins (ATPase7A/B and Ctr1, respectively) specifically transport Cu(I), the abundance of extracellular ascorbate reducing agent in the brain, and evidence of a potential associative (hand-off) mechanism of Cu(I) transfer that may mirror the mechanisms of intracellular Cu chaperone proteins.


Subject(s)
Amyloid beta-Peptides/metabolism , Copper Transporter 1/metabolism , Copper/metabolism , Amyloid beta-Peptides/chemistry , Copper/chemistry , Copper Transporter 1/chemistry , Humans , Spectrometry, Fluorescence
14.
Inorg Chem ; 59(19): 13858-13874, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32936627

ABSTRACT

8-Hydroxyquinolines (8HQs) are a family of lipophilic metal ion chelators that have been used in a range of analytical and pharmaceutical applications over the last 100 years. More recently, CQ (clioquinol; 5-chloro-7-iodo-8-hydroxyquinoline) and PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) have undergone clinical trials for the treatment of Alzheimer's disease and Huntington's disease. Because CQ and PBT2 appear to redistribute metals into cells, these compounds have been redefined as copper and zinc ionophores. Despite the attention surrounding the clinical trials and the clear link between 8HQs and metals, the fundamental solution chemistry of how these compounds bind divalent metals such as copper and zinc, as well as their mechanism(s) of action in mammalian systems, remains poorly understood. In this study, we used a combination of X-ray absorption spectroscopy (XAS), high-energy resolution fluorescence detected (HERFD) XAS, electron paramagnetic resonance (EPR), and UV-visible absorption spectroscopies to investigate the aqueous solution chemistry of a range of 8HQ derivatives. To circumvent the known solubility issues with 8HQ compounds and their complexes with Cu(II), and to avoid the use of abiological organic solvents, we have devised a surfactant buffer system to investigate these Cu(II) complexes in aqueous solution. Our study comprises the first comprehensive investigation of the Cu(II) complexes formed with many 8HQs of interest in aqueous solution, and it provides the first structural information on some of these complexes. We find that halogen substitutions in 8HQ derivatives appear to have little effect on the Cu(II) coordination environment; 5,7-dihalogenated 8HQ conformers all have a pseudo square planar Cu(II) bound by two quinolin-8-olate anions, in agreement with previous studies. Conversely, substituents in the 2-position of the 8HQ moiety appear to cause significant distortions from the typical square-planar-like coordination of most Cu(II)-bis-8HQ complexes, such that the 8HQ moieties in the Cu(II)-bis-8HQ complex are rotated approximately 30-40° apart in a "propeller-like" arrangement.

15.
J Mol Biol ; 432(16): 4408-4425, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32473880

ABSTRACT

The cellular prion protein (PrPC) comprises two domains: a globular C-terminal domain and an unstructured N-terminal domain. Recently, copper has been observed to drive tertiary contact in PrPC, inducing a neuroprotective cis interaction that structurally links the protein's two domains. The location of this interaction on the C terminus overlaps with the sites of human pathogenic mutations and toxic antibody docking. Combined with recent evidence that the N terminus is a toxic effector regulated by the C terminus, there is an emerging consensus that this cis interaction serves a protective role, and that the disruption of this interaction by misfolded PrP oligomers may be a cause of toxicity in prion disease. We demonstrate here that two highly conserved histidines in the C-terminal domain of PrPC are essential for the protein's cis interaction, which helps to protect against neurotoxicity carried out by its N terminus. We show that simultaneous mutation of these histidines drastically weakens the cis interaction and enhances spontaneous cationic currents in cultured cells, the first C-terminal mutant to do so. Whereas previous studies suggested that Cu2+ coordination was localized solely to the protein's N-terminal domain, we find that both domains contribute equatorially coordinated histidine residue side-chains, resulting in a novel bridging interaction. We also find that extra N-terminal histidines in pathological familial mutations involving octarepeat expansions inhibit this interaction by sequestering copper from the C terminus. Our findings further establish a structural basis for PrPC's C-terminal regulation of its otherwise toxic N terminus.


Subject(s)
Copper/metabolism , Mutation , Prion Proteins/chemistry , Prion Proteins/metabolism , Animals , DNA Repeat Expansion , Histidine/metabolism , Mice , Models, Molecular , Molecular Dynamics Simulation , Prion Proteins/genetics , Protein Conformation , Protein Domains , Protein Folding
16.
Inorg Chem ; 58(22): 15138-15154, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31657204

ABSTRACT

The amyloid-ß (Aß) peptide is a cleavage product of the amyloid precursor protein and has been implicated as a central player in Alzheimer's disease. The N-terminal end of Aß is variable, and different proportions of these variable-length Aß peptides are present in healthy individuals and those with the disease. The N-terminally truncated form of Aß starting at position 4 (Aß4-x) has a His residue as the third amino acid (His6 using the formal Aß numbering). The N-terminal sequence Xaa-Xaa-His is known as an amino terminal copper and nickel binding motif (ATCUN), which avidly binds Cu(II). This motif is not present in the commonly studied Aß1-x peptides. In addition to the ATCUN site, Aß4-x contains an additional metal binding site located at the tandem His residues (bis-His at His13 and 14) which is also found in other isoforms of Aß. Using the ATCUN and bis-His motifs, the Aß4-x peptide is capable of binding multiple metal ions simultaneously. We confirm that Cu(II) bound to this particular ATCUN site is redox silent, but the second Cu(II) site is redox active and can be readily reduced with ascorbate. We have employed surrogate metal ions to block copper coordination at the ATCUN or the tandem His site in order to isolate spectral features of the copper coordination environment for structural characterization using extended X-ray absorption fine structure (EXAFS) spectroscopy. This approach reveals that each copper coordination environment is independent in the Cu2Aß4-x state. The identification of two functionally different copper binding environments within the Aß4-x sequence may have important implications for this peptide in vivo.


Subject(s)
Amyloid beta-Peptides/metabolism , Copper/metabolism , Peptide Fragments/metabolism , Alzheimer Disease/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amyloid beta-Peptides/chemistry , Binding Sites , Copper/chemistry , Humans , Models, Molecular , Oxidation-Reduction , Peptide Fragments/chemistry , Protein Binding
17.
Structure ; 27(6): 907-922.e5, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30956132

ABSTRACT

The cellular isoform of the prion protein (PrPC) serves as precursor to the infectious isoform (PrPSc), and as a cell-surface receptor, which binds misfolded protein oligomers as well as physiological ligands such as Cu2+ ions. PrPC consists of two domains: a flexible N-terminal domain and a structured C-terminal domain. Both the physiological and pathological functions of PrP depend on intramolecular interactions between these two domains, but the specific amino acid residues involved have proven challenging to define. Here, we employ a combination of chemical cross-linking, mass spectrometry, NMR, molecular dynamics simulations, and functional assays to identify residue-level contacts between the N- and C-terminal domains of PrPC. We also determine how these interdomain contacts are altered by binding of Cu2+ ions and by functionally relevant mutations. Our results provide a structural basis for interpreting both the normal and toxic activities of PrP.


Subject(s)
Copper/chemistry , Molecular Dynamics Simulation , Mutation , Prion Proteins/chemistry , Prion Proteins/genetics , Protein Domains , Animals , Cell Line , Copper/metabolism , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Humans , Magnetic Resonance Spectroscopy/methods , Mice , Prion Proteins/metabolism , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tandem Mass Spectrometry/methods
18.
Front Neurosci ; 13: 1415, 2019.
Article in English | MEDLINE | ID: mdl-32038130

ABSTRACT

Diffusible ions (Na+, K+, Mg2+, Ca2+, Cl-) are vital for healthy function of all cells, especially brain cells. Unfortunately, the diffusible nature of these ions renders them difficult to study with traditional microscopy in situ within ex vivo brain tissue sections. This mini-review examines the recent progress in the field, using direct elemental mapping techniques to study ion homeostasis during normal brain physiology and pathophysiology, through measurement of ion distribution and concentration in ex vivo brain tissue sections. The mini-review examines the advantages and limitations of specific techniques: proton induced X-ray emission (PIXE), X-ray fluorescence microscopy (XFM), secondary ion mass spectrometry (SIMS), laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and the sample preparation requirements to study diffusible ions with these methods.

19.
J Synchrotron Radiat ; 25(Pt 6): 1780-1789, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30407190

ABSTRACT

Synchrotron X-ray fluorescence imaging enables visualization and quantification of microscopic distributions of elements. This versatile technique has matured to the point where it is used in a wide range of research fields. The method can be used to quantitate the levels of different elements in the image on a pixel-by-pixel basis. Two approaches to X-ray fluorescence image analysis are commonly used, namely, (i) integrative analysis, or window binning, which simply sums the numbers of all photons detected within a specific energy region of interest; and (ii) parametric analysis, or fitting, in which emission spectra are represented by the sum of parameters representing a series of peaks and other contributing factors. This paper presents a quantitative comparison between these two methods of image analysis using X-ray fluorescence imaging of mouse brain-tissue sections; it is shown that substantial errors can result when data from overlapping emission lines are binned rather than fitted. These differences are explored using two different digital signal processing data-acquisition systems with different count-rate and emission-line resolution characteristics. Irrespective of the digital signal processing electronics, there are substantial differences in quantitation between the two approaches. Binning analyses are thus shown to contain significant errors that not only distort the data but in some cases result in complete reversal of trends between different tissue regions.

20.
Metallomics ; 10(12): 1723-1727, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30489586

ABSTRACT

Human cells acquire copper primarily via the copper transporter 1 protein, hCtr1. We demonstrate that at extracellular pH 7.4 CuII is bound to the model peptide hCtr11-14via an ATCUN motif and such complexes are strong enough to collect CuII from albumin, supporting the potential physiological role of CuII binding to hCtr1.


Subject(s)
Cation Transport Proteins/metabolism , Copper/metabolism , Peptide Fragments/metabolism , Serum Albumin, Human/metabolism , Binding Sites , Biological Transport , Cation Transport Proteins/chemistry , Copper/chemistry , Copper Transporter 1 , Humans , Models, Molecular , Protein Binding , Serum Albumin, Human/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...