Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 86(3): 2032-2046, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37002423

ABSTRACT

Ostreobium, the major algal symbiont of the coral skeleton, remains understudied despite extensive research on the coral holobiont. The enclosed nature of the coral skeleton might reduce the dispersal and exposure of residing bacteria to the outside environment, allowing stronger associations with the algae. Here, we describe the bacterial communities associated with cultured strains of 5 Ostreobium clades using 16S rRNA sequencing. We shed light on their likely physical associations by comparative analysis of three datasets generated to capture (1) all algae associated bacteria, (2) enriched tightly attached and potential intracellular bacteria, and (3) bacteria in spent media. Our data showed that while some bacteria may be loosely attached, some tend to be tightly attached or potentially intracellular. Although colonised with diverse bacteria, Ostreobium preferentially associated with 34 bacterial taxa revealing a core microbiome. These bacteria include known nitrogen cyclers, polysaccharide degraders, sulphate reducers, antimicrobial compound producers, methylotrophs, and vitamin B12 producers. By analysing co-occurrence networks of 16S rRNA datasets from Porites lutea and Paragoniastrea australensis skeleton samples, we show that the Ostreobium-bacterial associations present in the cultures are likely to also occur in their natural environment. Finally, our data show significant congruence between the Ostreobium phylogeny and the community composition of its tightly associated microbiome, largely due to the phylosymbiotic signal originating from the core bacterial taxa. This study offers insight into the Ostreobium microbiome and reveals preferential associations that warrant further testing from functional and evolutionary perspectives.


Subject(s)
Anthozoa , Chlorophyta , Microbiota , Animals , Anthozoa/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Coral Reefs
2.
Sci Rep ; 13(1): 2743, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797257

ABSTRACT

Interactions between microalgae and bacteria can directly influence the global biogeochemical cycles but the majority of such interactions remain unknown. 16S rRNA gene-based co-occurrence networks have potential to help identify microalgal-bacterial interactions. Here, we used data from 10 Earth microbiome projects to identify potential microalgal-bacterial associations in aquatic ecosystems. A high degree of clustering was observed in microalgal-bacterial modules, indicating densely connected neighbourhoods. Proteobacteria and Bacteroidetes predominantly co-occurred with microalgae and represented hubs of most modules. Our results also indicated that species-specificity may be a global characteristic of microalgal associated microbiomes. Several previously known associations were recovered from our network modules, validating that biologically meaningful results can be inferred using this approach. A range of previously unknown associations were recognised such as co-occurrences of Bacillariophyta with uncultured Planctomycetes OM190 and Deltaproteobacteria order NB1-j. Planctomycetes and Verrucomicrobia were identified as key associates of microalgae due to their frequent co-occurrences with several microalgal taxa. Despite no clear taxonomic pattern, bacterial associates appeared functionally similar across different environments. To summarise, we demonstrated the potential of 16S rRNA gene-based co-occurrence networks as a hypothesis-generating framework to guide more focused research on microalgal-bacterial associations.


Subject(s)
Microalgae , Microbiota , RNA, Ribosomal, 16S/genetics , Microalgae/genetics , Genes, rRNA , Bacteria/genetics , Microbiota/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...