Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Gels ; 7(4)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34698125

ABSTRACT

Delivering a drug to the target site with minimal-to-no off-target cytotoxicity is the major determinant for the success of disease therapy. While the therapeutic efficacy and cytotoxicity of the drug play the main roles, the use of a suitable drug delivery system (DDS) is important to protect the drug along the administration route and release it at the desired target site. Polysaccharides have been extensively studied as a biomaterial for DDS development due to their high biocompatibility. More usefully, polysaccharides can be crosslinked with various molecules such as micro/nanoparticles and hydrogels to form a modified DDS. According to IUPAC, hydrogel is defined as the structure and processing of sols, gels, networks and inorganic-organic hybrids. This 3D network which often consists of a hydrophilic polymer can drastically improve the physical and chemical properties of DDS to increase the biodegradability and bioavailability of the carrier drugs. The advancement of nanotechnology also allows the construction of hydrogel DDS with enhanced functionalities such as stimuli-responsiveness, target specificity, sustained drug release, and therapeutic efficacy. This review provides a current update on the use of hydrogel DDS derived from polysaccharide-based materials in delivering various therapeutic molecules and drugs. We also highlighted the factors that affect the efficacy of these DDS and the current challenges of developing them for clinical use.

2.
Gels ; 7(2)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067587

ABSTRACT

With cancer remaining as one of the main causes of deaths worldwide, many studies are undergoing the effort to look for a novel and potent anticancer drug. Nanoparticles (NPs) are one of the rising fields in research for anticancer drug development. One of the key advantages of using NPs for cancer therapy is its high flexibility for modification, hence additional properties can be added to the NPs in order to improve its anticancer action. Polymer has attracted considerable attention to be used as a material to enhance the bioactivity of the NPs. Nanogels, which are NPs cross-linked with hydrophilic polymer network have also exhibited benefits in anticancer application. The characteristics of these nanomaterials include non-toxic, environment-friendly, and variable physiochemical properties. Some other unique properties of polymers are also attributed by diverse methods of polymer synthesis. This then contributes to the unique properties of the nanodrugs. This review article provides an in-depth update on the development of polymer-assisted NPs and nanogels for cancer therapy. Topics such as the synthesis, usage, and properties of the nanomaterials are discussed along with their mechanisms and functions in anticancer application. The advantages and limitations are also discussed in this article.

3.
Methods Mol Biol ; 2211: 171-182, 2021.
Article in English | MEDLINE | ID: mdl-33336277

ABSTRACT

Polysaccharides are excellent candidates for drug delivery applications as they are available in abundance from natural sources. Polysaccharides such as starch, cellulose, lignin, chitosan, alginate, and tragacanth gum are used to make hydrogels beads. Hydrogels beads are three-dimensional, cross-linked networks of hydrophilic polymers formed in spherical shape and sized in the range of 0.5-1.0 mm of diameter. Beads are formed by various cross-linking methods such as chemical and irradiation methods. Natural polymer-based hydrogels are biocompatible and biodegradable and have inherently low immunogenicity, which makes them suitable for physiological drug delivery approaches. The cross-linked polysaccharide-based hydrogels are environment-sensitive polymers that can potentially be used for the development of "smart" delivery systems, which are capable of control release of the encapsulated drug at a targeted colon site. This topic focuses on various aspects of fabricating and optimizing the cross-linking of polysaccharides, either by a single polysaccharide or mixtures and also natural-synthetic hybrids to produce polymer-based hydrogel vehicles for colon-targeted drug delivery.


Subject(s)
Biological Products/chemistry , Colon/drug effects , Drug Carriers/chemistry , Drug Delivery Systems , Hydrogels/chemistry , Polymers/chemistry , Aluminum/chemistry , Chemical Phenomena , Chemistry, Pharmaceutical , Cross-Linking Reagents/chemistry , Emulsions , Hydrogen-Ion Concentration , Molecular Targeted Therapy , Polysaccharides/chemistry
4.
Nanoscale Adv ; 2(5): 1760-1773, 2020 May 19.
Article in English | MEDLINE | ID: mdl-36132507

ABSTRACT

Nanoparticles possess fascinating properties and applications, and there has been increasing critical consideration of their use. Because carbon is a component with immaterial cytotoxicity and extensive biocompatibility with different components, carbon nanomaterials have a wide scope of potential uses. Carbon nanodots are a type of carbon nanoparticle that is increasingly being researched because of their astounding properties such as extraordinary luminescence, simplicity of amalgamation and surface functionalization, and biocompatibility. Because of these properties, carbon nanodots can be used as material sensors, as indicators in fluorescent tests, and as nanomaterials for biomedical applications. In this review, we report on the ongoing and noteworthy utilization of carbon quantum dots such as bioimaging tests and photocatalytic applications. In addition, the extension and future components of these materials, which can be investigated for new potential applications, are discussed.

5.
Colloids Surf B Biointerfaces ; 188: 110713, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31884080

ABSTRACT

Electrospinning is a common method to prepare nanofiber scaffolds for tissue engineering. One of the common cellulose esters, cellulose acetate butyrate (CAB), has been electrospun into nanofibers and studied. However, the intrinsic hydrophobicity of CAB limits its application in tissue engineering as it retards cell adhesion. In this study, the properties of CAB nanofibers were improved by fabricating the composite nanofibers made of CAB and hydrophilic polyethylene glycol (PEG). Different ratios of CAB to PEG were tested and only the ratio of 2:1 resulted in smooth and bead-free nanofibers. The tensile test results show that CAB/PEG composite nanofibers have 2-fold higher tensile strength than pure CAB nanofibers. The hydrophobicity of the composite nanofibers was also reduced based on the water contact angle analysis. As the hydrophilicity increases, the swelling ability of the composite nanofiber increases by 2-fold with more rapid biodegradation. The biocompatibility of the nanofibers was tested with normal human dermal fibroblasts (NHDF). The cell viability assay results revealed that the nanofibers are non-toxic. In addition to that, CAB/PEG nanofibers have better cell attachment compared to pure CAB nanofibers. Based on this study, CAB/PEG composite nanofibers could potentially be used as a nanofiber scaffold for applications in tissue engineering.


Subject(s)
Biocompatible Materials/chemistry , Cellulose/analogs & derivatives , Nanofibers/chemistry , Polyethylene Glycols/chemistry , Tissue Engineering , Cell Adhesion , Cells, Cultured , Cellulose/chemistry , Humans , Particle Size , Surface Properties
6.
Bioengineering (Basel) ; 6(1)2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30754677

ABSTRACT

Challenges in organ transplantation such as high organ demand and biocompatibility issues have led scientists in the field of tissue engineering and regenerative medicine to work on the use of scaffolds as an alternative to transplantation. Among different types of scaffolds, polymeric hydrogel scaffolds have received considerable attention because of their biocompatibility and structural similarity to native tissues. However, hydrogel scaffolds have several limitations, such as weak mechanical property and a lack of bioactive property. On the other hand, noble metal particles, particularly gold (Au) and silver (Ag) nanoparticles (NPs), can be incorporated into the hydrogel matrix to form NP⁻hydrogel composite scaffolds with enhanced physical and biological properties. This review aims to highlight the potential of these hybrid materials in tissue engineering applications. Additionally, the main approaches that have been used for the synthesis of NP⁻hydrogel composites and the possible limitations and challenges associated with the application of these materials are discussed.

7.
Sci Pharm ; 86(2)2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29874858

ABSTRACT

The purpose behind the work was to fabricate alginate beads with better drug loading and extended drug release. Ispaghula was used to enhance the drug loading while zein was employed to extend the drug release. Ibuprofen was employed as a model drug in this study. Ibuprofen-loaded alginate beads with and without ispaghula were prepared using vibration technology and coated with zein. The beads prepared with alginate alone were shown to have loading and entrapment efficiencies of 35% and 70% w/w, respectively. Addition of ispaghula in alginate showed a significant increase (p < 0.05) in the drug loading (42% w/w) and entrapment efficiency (84% w/w). Fourier-transform infrared spectroscopy confirmed the presence of ispaghula and zein coating in the alginate beads as well as the ibuprofen loading. Scanning electron microscopy revealed better spherical geometry in the beads with ispaghula. The surface morphology of the uncoated beads was rough due to crystalline and surface drug. The zein coating has produced a smoother surface and particle adhesion. Differential scanning calorimetry has shown a reduction in drug crystallinity. Alginate beads extended the drug release for 4 h and the presence of zein extended the release for 6 h.

8.
IET Nanobiotechnol ; 12(4): 429-435, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29768225

ABSTRACT

Ultrafine titanium dioxide (TiO2) nanowires were synthesised using a hydrothermal method with different volumes of ethylene glycol (EG) and annealing temperatures. It shows that sodium titanate nanowires synthesised using 5 and 10 ml EG, which annealed at 400°C produced TiO2 nanowires that correspond to a photochemically active phase, which is anatase. The influences of annealing temperatures (400-600°C) on the morphological arrangement of TiO2 nanowires were evident in the field emission scanning electron microscopy. The annealing temperature of 500°C led to agglomeration, which formed a mixture of TiO2 nanoparticles and nanowires. High thermal stability of TiO2 nanowires revealed by thermogravimetric analysis and Fourier transform infrared spectroscopy spectrum showed the presence of the Ti-O-Ti vibrations as evidenced due to TiO2 lattices. An antibacterial study using TiO2 nanowires toward Escherichia coli and Klebsiella pneumoniae showed large zones of inhibition that indicated susceptibility of the microbe toward TiO2. Growth kinetic analysis shows that addition of TiO2 has reduced optical density (OD) suggesting an inhibition of the growth of bacteria. These results indicate TiO2 nanowires can be effectively used as an antimicrobial agent against gram-bacteria. The TiO2 nanowires could be exploited in the medical, packaging and detergent formulation industries and wastewater treatment.


Subject(s)
Anti-Bacterial Agents/chemistry , Nanowires/chemistry , Titanium/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Hot Temperature , Spectroscopy, Fourier Transform Infrared , Titanium/pharmacology
9.
Carbohydr Polym ; 173: 619-630, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28732906

ABSTRACT

Crosslinked carboxymethyl cellulose grafted carboxymethyl polyvinyl alcohol (CMC-g-CMPVA) was loaded with modified magnetite iron oxide (Fe3O4) nanoparticles to synthesise a new and easily separable adsorbent for the removal of copper (II) ions from water. The novel adsorbents were characterised by the presence of the functional group, surface morphology, crystallinity and magnetic property. The equilibrium time from the adsorption studies was found to be less than 240min for both film and bead forms while the rate of Cu2+ removal decreased as the initial Cu2+ concentration increased. In addition, CMC-g-CMPVA film loaded with Fe3O4/SiO2 nanoparticles was the best adsorbent with maximum adsorption capacity of 35.34mg/g and exhibited a reusable potential. The properties exhibited by the new heterogeneous material is a promising adsorbent for the removal and recovery of copper (II) from wastewater.

10.
Chempluschem ; 81(6): 504-514, 2016 Jun.
Article in English | MEDLINE | ID: mdl-31968918

ABSTRACT

Polysaccharides are ideal candidates for drug delivery and biomedical applications as they are easily obtained from natural sources. Furthermore, they can be subjected to a wide range of chemical and enzymatic reactions, they have biocompatible and biodegradable properties and have inherently low immunogenicity. Polysaccharides are potentially the materials of choice for the development of "smart" delivery systems, which are capable of releasing, at the appropriate time and site of action, an encapsulated drug. This Review examines various aspects of the crosslinking of polysaccharides, either for a single polysaccharide or mixtures, and also natural-synthetic hybrids. The Review focuses on the strategies for using these biodegradable polymers for controlled drug delivery, and examines in particular polysaccharide-drug conjugates, the encapsulation of drugs in hydrogels and aerogels, and the self-assembly of polysaccharide drug-loaded nanoparticles.

11.
Carbohydr Polym ; 94(1): 356-63, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23544549

ABSTRACT

The carboxymethyl sago pulp (CMSP) with a degree of substitution of 0.4% was synthesized from sago waste. The CMSP beads with an average diameter of 3.1-4.8 mm were formed by aluminium chloride gelation as well as further cross-linked by irradiation. To evaluate colon targeted release, a model drug, 5-aminosalicylic acid (5-ASA) was encapsulated in CMSP beads. Fourier-transform infrared spectroscopy and X-ray diffraction studies indicated intact and amorphous nature of entrapped drug. A pH dependent drug release was observed, and about 90% of the drug was released only at pH 7.4 over 9 h. Irradiated beads were resisted the drug release in an acidic environment at a higher extent than non-irradiated beads. The drug release from 6% (w/w) of 5-ASA loaded bead followed zero order, whereas, 15 and 22% loaded beads followed first order. The release exponent n value suggests non-fickian transport of 5-ASA from the beads.


Subject(s)
Aluminum Compounds/chemistry , Arecaceae/chemistry , Cellulose/chemistry , Chlorides/chemistry , Aluminum Chloride , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cross-Linking Reagents/chemistry , Drug Carriers/chemistry , Hydrogels/chemistry , Kinetics , Mesalamine/chemistry , Microspheres , Particle Size , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...