Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Oral Maxillofac Pathol ; 22(1): 54-58, 2018.
Article in English | MEDLINE | ID: mdl-29731557

ABSTRACT

BACKGROUND: A traumatic ulcer caused by diabetes mellitus (DM) is a lesion caused by an increase in advanced glycosylation end products (AGEs), which takes a long time to heal. AGEs cause angiogenesis, vasculogenesis and a decrease in leukocytes. Fibroblast proliferation and the number of glycosaminoglycans decline, thereby inhibiting the formation of granulation tissue, collagen deposition and platelet derivatives growth factor. The application of topical propolis extract gel to ulcers has an anti-inflammatory function, triggers angiogenesis and accelerates wound healing. AIMS: This study sought to establish whether the topical application of propolis extract gel can increase the expression of fibroblast growth factor-2 (FGF-2) and fibroblasts in the healing process of traumatic ulceration in diabetic Wistar rats (Rattus norvegicus). METHODS: This was a genuinely experimental research design featuring posttest-only control groups. The simple random sampling technique involved 24 male DM Wistar rats with traumatic ulcers on the labial mucosa of the lower lip. The samples were divided into two groups: a control group whose members were administered hydroxypropyl methylcellulose gel 5% and a treatment group to which propolis extract gel was applied. The expression of FGF-2 and fibroblasts was observed on days 3, 5, 7 and 9 by means of histology and immunohistochemistry (hypothalamic-pituitary-adrenal) with Ab-Mo FGF-2. RESULTS: The topical application of propolis extract gel increased the expression of FGF-2 and fibroblasts in the treatment group on days 5 and 7. There was a correlation between the increased expression of FGF-2 and the number of fibroblasts (P < 0.05). CONCLUSION: The topical application of propolis extract gel increases the expression of FGF-2 and fibroblasts within the traumatic ulcer healing process in diabetic R. norvegicus.

SELECTION OF CITATIONS
SEARCH DETAIL