Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Glob Antimicrob Resist ; 37: 141-149, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608934

ABSTRACT

OBJECTIVES: Antibiotic-resistant Klebsiella pneumoniae is a human pathogen of major global concern due to its ability to cause multiple severe diseases that are often difficult to treat therapeutically. This study aimed to investigate the resistome of local clinical K. pneumoniae isolates. METHODS: Herein, we used a whole genome sequencing approach and bioinformatics tools to reconstruct the resistome of 10 clinical K. pneumoniae isolates and one clinical isolate of the closely related Klebsiella quasipneumoniae obtained from patients from three major hospitals in Trinidad, West Indies. RESULTS: The results of the study revealed the presence of a complex antibiotic-resistant armoury among the local isolates with multiple resistance mechanisms involving (i) inactivation of antibiotics, (ii) efflux pumps, (iii) antibiotic target alteration, protection, and replacement against antibiotics, and (iv) altered porin protein that reduced the permeability to antibiotics. Several resistance genes such as blaCTX-M-15, blaTEM-1B, blaSHV-28, blaKPC-2, oqxA, sul1, tetD, aac(6')-Ib-cr5, aph(6)-Id, and fosA6, which are known to confer resistance to antibiotics used to treat K. pneumoniae infections. In most cases, the resistance genes were flanked by mobile elements, including insertion sequences and transposons, which facilitate the spread of these genetic features among related organisms. CONCLUSION: This is the first comprehensive study to thoroughly investigate the resistome of clinical K. pneumoniae isolates and K. quasipneumoniae from Trinidad, West Indies. These findings suggest that monitoring K. pneumoniae and its genome-wide antibiotic resistance features in clinical strains would be of critical importance for guiding antibiotic stewardship programs and improving regional disease management systems for this pathogen.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Whole Genome Sequencing , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Trinidad and Tobago , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Hospitals , Klebsiella/genetics , Klebsiella/drug effects , Klebsiella/isolation & purification
2.
PLoS One ; 18(7): e0283583, 2023.
Article in English | MEDLINE | ID: mdl-37428714

ABSTRACT

Klebsiella pneumoniae and Klebsiella quasipneumoniae are closely related human pathogens of global concern. The more recently described K. quasipneumoniae shares similar morphological characteristics with K. pneumoniae and is commonly misidentified as this species using traditional laboratory techniques. The vast mobilome in these pathogenic bacteria influences the dissemination of virulence factors in high-risk environments and it is, therefore, critical to monitor strains for developing effective clinical management strategies. Herein, this study utilized Illumina sequencing to characterize the whole genomes of nine clinical K. pneumoniae and one K. quasipneumoniae isolate obtained from patients of 3 major hospitals in Trinidad, West Indies. Reconstruction of the assembled genomes and implementation of several bioinformatic tools revealed unique features such as high pathogenicity islands associated with the isolates. The K. pneumoniae isolates were categorized as classical (n = 3), uropathogenic (n = 5), or hypervirulent (n = 1) strains. In silico multilocus sequence typing, and phylogenetic analysis showed that isolates were related to several international high-risk genotypes, including sequence types ST11, ST15, ST86, and ST307. Analysis of the virulome and mobilome of these pathogens showed unique and clinically important features including the presence of genes associated with Type 1 and Type 3 fimbriae, the aerobactin and yersiniabactin siderophore systems, the K2 and O1/2, and the O3 and O5 serotypes. These genes were either on or in close proximity to insertion sequence elements, phage sequences, and plasmids. Several secretion systems including the Type VI system and relevant effector proteins were prevalent in the local isolates. This is the first comprehensive study investigating the genomes of clinical K. pneumoniae and K. quasipneumoniae isolates from Trinidad, West Indies. The data presented illustrate the diversity of Trinidadian clinical K. pneumoniae isolates as well as significant virulence biomarkers and mobile elements associated with these isolates. Additionally, the genomes of the local isolates will add to global databases and thus can be used in future surveillance or genomic studies in this country and the wider Caribbean region.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Serogroup , Phylogeny , Trinidad and Tobago , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Genomics , Anti-Bacterial Agents , beta-Lactamases/genetics , Microbial Sensitivity Tests
3.
Curr Microbiol ; 79(9): 278, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35920975

ABSTRACT

Accurate species identification and antibiotic resistance profiling are essential for the effective management of infections caused by bacterial pathogens. In this study, 373 clinical isolates of K. pneumoniae from major hospitals in Trinidad, West Indies, were characterized for resistance against beta-lactam antibiotics and the presence of genes encoding important virulence factors. Most of the isolates showed extended spectrum ß-lactamase (ESBL) activity but few also displayed carbapenemase or 'ESBL + carbapenemase' activities. Polymerase chain reaction analysis revealed the presence of genes for ESBL subtypes blaTEM, blaSHV, and blaCTX-M that were dominant in isolates with the ESBL phenotype as well as those that did not show ESBL or carbapenemase activities. The carbapenem resistance gene, blaKPC, and the metallo-ß-lactamase (MBL) gene, blaNDM-1, were also detected in some of the isolates. Multiple virulence genes were also detected, but the fimH-uge was the most common combination found among the local isolates. The findings of this study represent the first comprehensive study on the prevalence of ESBL, KPC and MBL genes and virulence profiling in antibiotic-resistant K. pneumoniae in Trinidad. Furthermore, the occurrence of multiple resistant phenotypes and gene combinations were revealed, though at low prevalence rates. This work emphasizes the need to implement molecular-based techniques in diagnostic workflows for rapid and accurate species identification and profiling of resistance and virulence genes in K. pneumoniae in Trinidad and Tobago.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Hospitals , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Microbial Sensitivity Tests , Trinidad and Tobago , Virulence Factors/genetics , beta-Lactam Resistance/genetics , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...