Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 31(41): 415301, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31292291

ABSTRACT

X-ray and optical spectroscopies were applied in order to study the band structure and electronic excitations of the SiO x /R y O z (R = Si, Al, Zr) suboxide superlattices. The complementary x-ray emission and absorption measurements allow for the band gap values for the SiO x layers to be established, which are found to have almost no dependency on the cation type R. It is determined that, after annealing, the stoichiometric factor x remains near 1.8 in all the systems under study, implying that the silicon quantum dot synthesis reaction is not fully completed. It is shown that the SiO x /Al2O3 multilayer contains octahedral structural motifs (SiO6) usually found in stishovite, whereas SiO x /SiO2 and SiO x /ZrO2 demonstrate an electronic structure similar to conventional silica. The intrinsic electronic excited states are examined by means of synchrotron-excited photoluminescence spectroscopy. Low-energy UV-excited luminescence of SiO x layers is found to have the same spectrum in all of the studied structures, while VUV-excited spectra strongly depend on the cation R. In these measurements, manifestations of 'slow' exciton-mediated and 'fast' defect-related luminescence are distinguished using nanosecond time resolution. It is shown that both mobile and bounded excitons appear in the suboxide layer under 6.2 eV and 5.8 eV irradiation and then relax radiatively through the triplet-singlet transition of the neighbouring oxygen-deficient centers. The complete picture of the optical excitation and relaxation processes in these materials is illustrated in a general diagram depicting electronic states.

2.
ACS Appl Mater Interfaces ; 10(4): 3769-3775, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29308879

ABSTRACT

Optical and transport properties of nonstoichiometric tantalum oxide thin films grown by ion beam deposition were investigated in order to understand the dominant charge transport mechanisms and reveal the nature of traps. The TaOx films composition was analyzed by X-ray photoelectron spectroscopy and by quantum-chemistry simulation. From the optical absorption and photoluminescence measurements and density functional theory simulations, it was concluded that the 2.75 eV blue luminescence excited in a TaOx by 4.45 eV photons, originates from oxygen vacancies. These vacancies are also responsible for TaOx conductivity. The thermal trap energy of 0.85 eV determined from the transport experiments coincides with the half of the Stokes shift of the blue luminescence band. It is argued that the dominant charge transport mechanism in TaOx films is phonon-assisted tunneling between the traps.

3.
J Phys Condens Matter ; 24(40): 405902, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22987866

ABSTRACT

The anomalous (τ < 10 ns) luminescence of wide bandgap crystals of lithium-gadolinium orthoborate Li(6)GdB(3)O(9) doped with trivalent cerium ions, has been revealed for the first time and investigated through the low-temperature time-resolved vacuum ultraviolet synchrotron spectroscopy. It was shown that the optical transitions at 6.2 eV are due to electron transfer from the ground 4f(1) states of Ce(3+) ion onto the autoionized states near the conduction band bottom of a crystal. These transitions lead to the formation of impurity-bound excitons in the form of correlated electron-hole pair, in which the hole component is localized at 4f-level of the cerium ion and an electron component is located at the conduction band bottom in the attractive potential of this hole. It is established that the direct radiative recombination of the cerium impurity-bound exciton leads to a fast broadband emission at 4.25 eV. The energy threshold for creation of the impurity-bound excitons was determined on the basis of the obtained spectroscopic data. We calculated the H(k) functions of distribution of the elementary relaxations over the reaction rate constants and explained on this basis the decay kinetics and quenching processes, not only for the anomalous emission at 4.25 eV, but for the ordinary 5d-4f luminescence at 3.0 eV in Ce(3+) ions. The paper discusses the decay channels for the impurity-bound excitons and their influence on the decay kinetics and spectra of luminescence in Li(6)GdB(3)O(9) crystals.


Subject(s)
Borates/chemistry , Gadolinium/chemistry , Lithium Compounds/chemistry , Luminescence , Crystallization , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...