Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(9): 5993-6001, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36814873

ABSTRACT

High-quality CsCu2X3 and Cs3Cu2X5 (X = Cl, Br, I) nanocrystals (NCs) exhibit excellent optoelectronic, physical, and chemical properties for detection of UV radiation due to large carrier mobility and lifetime, and heavy atoms. The nanocrystal materials can be prepared via a low-cost and simple solid-state synthesis. However, poor reproducibility and complex synthesis methods of obtaining perovskite NC thin films represent a drawback for the fabrication of the commercial photoelectric device. To address these issues, we develop highly stable CsCu2X3 and Cs3Cu2X5 NC materials using a facile solid-state reaction method for the scale-up production of halogen lead-free perovskites. We suggest a distinctive way to design a series of nanocrystalline perovskites using short-term synthesis and study the mechanism of perovskite formation using thermal solid-state synthesis. These all-inorganic and lead-free CsCu2X3 and Cs3Cu2X5 exhibit large photoluminescence quantum yields (PLQYs) up to 95.2%. Moreover, flexible paper photodetectors based on this series of lead-free perovskites show strong photoselectivity and bending stability at 254 nm, 365 nm, and 405 nm wavelengths. High-quality responses with a responsivity of 1.1 × 10-3 A W-1 and detectivity of 2.71 × 109 jones under UV illumination (10 µW cm-2) at a bias voltage of 5 mV are demonstrated. These results open prospects for designing photodetectors, LEDs, and other photosensitive devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...