Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 156: 106699, 2021 11.
Article in English | MEDLINE | ID: mdl-34171590

ABSTRACT

Given the remaining air quality issues in many European regions, smart air quality strategies are necessary to reduce the burden of poor air quality. While designing effective strategies for non-reactive primary pollutants is straightforward, this is not the case for secondary pollutants for which the relationship between emission changes and the resulting concentration changes can be nonlinear. Under such conditions, strategies targeting the largest emitting sources might not be the most effective. In this work, we provide elements to better understand the role of the main emission precursors (SO2, NOx, NH3) on the formation of secondary inorganic aerosols. By quantifying the PM2.5 sensitivity to emission reductions for each of these three precursors, we define and quantify the intensity of PM2.5 formation chemical regimes across Europe. We find that for emission reductions limited to 25%, the relation between emission and PM concentration changes remain mostly linear, with the exception of the Po Valley where non-linearities reach more than 30% in winter. When emission reductions increase to 50%, non-linearity reaches more than 60% in the Po Valley but stay below 30% in the rest of Europe. In terms of implications on abatement strategies, our findings can be summarized in the following key messages: (1) reducing SO2 emissions where abundant is always efficient (e.g. eastern Europe and Balkans); (2) reducing NH3 emissions is more efficient where it is less abundant (e.g. the Po basin) than where it is abundant, given the limiting role of NH3 in the PM formation; (3) reducing NOx emissions where NOx are abundant can be counter-productive with potential increases of PM due to the increased oxidant capacity of the atmosphere (e.g. Po valley); (4) because regions with both NH3 and NOx sensitive chemical regimes are mixed within countries, both need to be reduced together, as pollution reduction policies need at least to be defined at a country level; (6) while for NH3 the focus is clearly on wintertime, it is the whole year for NOx. The simulations proposed in this work could be used as benchmark for other models as they constitute the type of scenarios required to support air quality strategies. In addition, the straight and systematic emission reductions imposed for the scenarios in this work are well suited for a better understanding of the behavior of the model, in terms of responses to emission reductions.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Balkan Peninsula , Environmental Monitoring , Particulate Matter/analysis
2.
Sci Rep ; 8(1): 1482, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29367716

ABSTRACT

The formation of new atmospheric particles involves an initial step forming stable clusters less than a nanometre in size (<~1 nm), followed by growth into quasi-stable aerosol particles a few nanometres (~1-10 nm) and larger (>~10 nm). Although at times, the same species can be responsible for both processes, it is thought that more generally each step comprises differing chemical contributors. Here, we present a novel analysis of measurements from a unique multi-station ground-based observing system which reveals new insights into continental-scale patterns associated with new particle formation. Statistical cluster analysis of this unique 2-year multi-station dataset comprising size distribution and chemical composition reveals that across Europe, there are different major seasonal trends depending on geographical location, concomitant with diversity in nucleating species while it seems that the growth phase is dominated by organic aerosol formation. The diversity and seasonality of these events requires an advanced observing system to elucidate the key processes and species driving particle formation, along with detecting continental scale changes in aerosol formation into the future.

3.
Environ Monit Assess ; 31(1-2): 131-7, 1994 May.
Article in English | MEDLINE | ID: mdl-24213897

ABSTRACT

Atmospheric samples collected during rice straw burning at four different locations in Viet-Nam during the dry (March 1992, February 1993) and wet season (August 1992) were analysed for CO2, CO, and CH4. The emission ratios relative to CO2 for CO and CH4 for rice straw burning during the dry season were comparable to those observed on samples collected during burning of savanna in Africa or forest in the USA. During the wet season, however the emission ratios for CO and CH4 relative to CO2 were 3 to 10 times higher. With these emission ratios and estimates of rice production from Southeastern Asia, we estimated that burning of rice straw emits annually about 2.2 Tmol of CO (26 TgC) and 0.2 Tmol of CH4 (2.4 TgC) to the atmosphere. Taking into account these new results, CO and CH4 fluxes from biomass burning could be reevaluated by 5-21% and 5-24%, respectively, in respect with previous estimates of these gas emissions from all biomass burning activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...