Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 9: 1782-1792, 2018.
Article in English | MEDLINE | ID: mdl-29977711

ABSTRACT

Owing to their high stability against corrosive gases, carbon-based adsorbents are preferentially used for the adsorptive removal of SO2. In the present study, SO2 adsorption on different carbon nanomaterials namely carbon nanohorns (CNHs), multiwalled carbon nanotubes (MWNTs), single-walled carbon nanotubes (SWNTs) and vertically aligned carbon nanotubes (VACNTs) are investigated and compared against the adsorption characteristics of activated carbon and graphene oxide (GO). A comprehensive overview of the adsorption behavior of this family of carbon adsorbents is given for the first time. The relative influence of surface area and functional groups on the SO2 adsorption characteristics is discussed. The isosteric heat of adsorption values are calculated to quantify the nature of the interaction between the SO2 molecule and the adsorbent. Most importantly, while chemisorption is found to dominate the adsorption behavior in activated carbon, SO2 adsorption on carbon nanomaterials occurs by a physisorption mechanism.

2.
Phys Chem Chem Phys ; 19(38): 26265-26271, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28933472

ABSTRACT

Whereas vertically aligned carbon nanotubes (VACNTs) typically show a promising adsorption behavior at high pressures, carbon nanohorns (CNHs) exhibit superior gas adsorption properties in the low pressure regime due to their inherent microporosity. These adsorption characteristics are further enhanced when both materials are opened at their tips. The so prepared composite material allows one to investigate the effect of physical entrapment of CO2 molecules within the specific adsorption sites of VACNTs composed of opened double walled carbon nanotubes (CNTs) and in specific adsorption sites created by spherically aggregated opened single walled carbon nanohorns. Combining 50 wt% of tip opened CNTs with tip opened CNHs increases the CO2 adsorption capacity of this material by ∼24% at 30 bar and 298 K compared to opened CNHs alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...