Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 5): 850-864, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33017318

ABSTRACT

The synthetically modified green fluorescent protein chromophore analogue 3,4,5-trimethoxybenzylidene imidazolinone (1) yielded five polymorphs (I, II, III, IV, V) concomitantly irrespective of the solvent used for crystallization. The pentamorphic modification of 1 is solely due to the interplay of iso-energetic weak intermolecular interactions in molecular associations as well as the conformational flexibility offered by a C-C single bond, which connects the electron-deficient moiety imidazolinone with the electron-rich trimethoxybenzylidene group. A common structural feature observed in all the polymorphs is the formation of a `zero-dimensional' centrosymmetric dimeric unit through a short and linear C-H...O hydrogen bond engaging phenyl C-H and imidazolinone carbonyl oxygen. However, the networking of these dimeric units showed a subtle difference in all the polymorphs. The 2D isostructurality was observed between polymorphs I, II and III, while the other two polymorphs IV and V revealed only `zero-dimensional' isostructurality. The different fluorescence emissions of Form I (blue) and Forms II to V (yellow) were attributed to the differences in π-stacking interactions. It shows that one can modulate the photophysical properties of these smart materials by slightly altering their crystal structure. Such an approach will aid in developing new multi-colour organic fluorescent materials of varying crystal structures for live-cell imaging and fluorescent sensing applications.


Subject(s)
Benzylidene Compounds/chemistry , Green Fluorescent Proteins/chemistry , Imidazolines/chemistry , Luminescent Agents/chemistry , Crystallization , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular
2.
Angew Chem Int Ed Engl ; 59(45): 19878-19883, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32667123

ABSTRACT

Single crystals of optoelectronic materials that respond to external stimuli, such as mechanical, light, or heat, are immensely attractive for next generation smart materials. Here we report single crystals of a green fluorescent protein (GFP) chromophore analogue with irreversible mechanical bending and associated unusual enhancement of the fluorescence, which is attributed to the strained molecular packing in the perturbed region. Soft crystalline materials with such fluorescence intensity modulations occurring in response to mechanical stimuli under ambient pressure conditions will have potential implications for the design of technologically relevant tunable fluorescent materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...