Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 2(10): 1497-1508, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25177487

ABSTRACT

The process of new blood vessel formation is critical in tissue development, remodeling and regeneration. Modular tissue engineering approaches have been developed to enable the bottom-up assembly of more complex tissues, including vascular networks. In this study, collagen-fibrin composite microbeads (100-300 µm in diameter) were fabricated using a water-in-oil emulsion technique. Human endothelial cells and human fibroblasts were embedded directly in the microbead matrix at the time of fabrication. Microbead populations were characterized and cultured for 14 days either as free-floating populations or embedded in a surrounding fibrin gel. The collagen-fibrin matrix efficiently entrapped cells and supported their viability and spreading. By 7 days in culture, endothelial cell networks were evident within microbeads, and these structures became more prominent by day 14. Fibroblasts co-localized with endothelial cells, suggesting a pericyte-like function, and laminin deposition indicated maturation of the vessel networks over time. Microbeads embedded in a fibrin gel immediately after fabrication showed the emergence of cells and the coalescence of vessel structures in the surrounding matrix by day 7. By day 14, inosculation of neighboring cords and prominent vessel structures were observed. Microbeads pre-cultured for 7 days prior to embedding in fibrin gave rise to vessel networks that emanated radially from the microbead by day 7, and developed into connected networks by day 14. Lumen formation in endothelial cell networks was confirmed using confocal sectioning. These data show that collagen-fibrin composite microbeads support vascular network formation. Microbeads embedded directly after fabrication emulated the process of vasculogenesis, while the branching and joining of vessels from pre-cultured microbeads resembled angiogenesis. This modular microtissue system has utility in studying the processes involved in new vessel formation, and may be developed into a therapy for the treatment of ischemic conditions.

2.
J Phys Condens Matter ; 22(19): 194121, 2010 May 19.
Article in English | MEDLINE | ID: mdl-20877437

ABSTRACT

Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 µm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.


Subject(s)
Biomimetic Materials/chemistry , Hydrogels/chemistry , Materials Testing/methods , Microscopy, Confocal/methods , Optical Tweezers , Elastic Modulus , Viscosity
3.
Acta Biomater ; 6(12): 4657-65, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20620246

ABSTRACT

Cellularized collagen gels are a common model in tissue engineering, but the relationship between the microstructure and bulk mechanical properties is only partially understood. Multiphoton microscopy (MPM) is an ideal non-invasive tool for examining collagen microstructure, cellularity and crosslink content in these gels. In order to identify robust image parameters that characterize microstructural determinants of the bulk elastic modulus, we performed serial MPM and mechanical tests on acellular and cellularized (normal human lung fibroblasts) collagen hydrogels, before and after glutaraldehyde crosslinking. Following gel contraction over 16 days, cellularized collagen gel content approached that of native connective tissues (∼200 mg ml⁻¹). Young's modulus (E) measurements from acellular collagen gels (range 0.5-12 kPa) exhibited a power-law concentration dependence (range 3-9 mg ml⁻¹) with exponents from 2.1 to 2.2, similar to other semiflexible biopolymer networks such as fibrin and actin. In contrast, cellularized collagen gel stiffness (range 0.5-27 kPa) produced concentration-dependent exponents of 0.7 uncrosslinked and 1.1 crosslinked (range ∼5-200 mg ml⁻¹). The variation in E of cellularized collagen hydrogels can be explained by a power-law dependence on robust image parameters: either the second harmonic generation (SHG) and two-photon fluorescence (TPF) (matrix component) skewness (R²=0.75, exponents of -1.0 and -0.6, respectively); or alternatively the SHG and TPF (matrix component) speckle contrast (R²=0.83, exponents of -0.7 and -1.8, respectively). Image parameters based on the cellular component of TPF signal did not improve the fits. The concentration dependence of E suggests enhanced stress relaxation in cellularized vs. acellular gels. SHG and TPF image skewness and speckle contrast from cellularized collagen gels can predict E by capturing mechanically relevant information on collagen fiber, cell and crosslink density.


Subject(s)
Collagen/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Gels/pharmacology , Materials Testing , Mechanical Phenomena/drug effects , Microscopy, Fluorescence, Multiphoton/methods , Cross-Linking Reagents/pharmacology , Fluorescence , Humans , Models, Chemical , Photons
4.
Am J Physiol Cell Physiol ; 280(3): C556-64, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11171575

ABSTRACT

A number of studies have suggested that externally applied mechanical forces and alterations in the intrinsic cell-extracellular matrix (ECM) force balance equivalently induce changes in cell phenotype. However, this possibility has never been directly tested. To test this hypothesis, we directly investigated the response of the microtubule (MT) cytoskeleton in smooth muscle cells to both mechanical signals and alterations in the ECM. A tensile force that resulted in a positive 10% step change in substrate strain increased MT mass by 34 +/- 10% over static controls, independent of the cell adhesion ligand and tyrosine phosphorylation. Conversely, a compressive force that resulted in a negative 10% step change in substrate strain decreased MT mass by 40 +/- 6% over static controls. In parallel, increasing the density of the ECM ligand fibronectin from 50 to 1,000 ng/cm(2) in the absence of any applied force increased the amount of polymeric tubulin in the cell from 59 +/- 11% to 81 +/- 13% of the total cellular tubulin. These data are consistent with a model in which MT assembly is, in part, controlled by forces imposed on these structures, and they suggest a novel control point for MT assembly by altering the intrinsic cell-ECM force balance and applying external mechanical forces.


Subject(s)
Extracellular Matrix/physiology , Microtubules/physiology , Animals , Cells, Cultured , Collagen/physiology , Cytoskeleton/physiology , Fibronectins/metabolism , Fibronectins/physiology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Phosphorylation , Polymers/metabolism , Pressure , Rats , Stress, Mechanical , Tubulin/metabolism , Tubulin/physiology , Tyrosine/metabolism
5.
J Cell Sci ; 111 ( Pt 22): 3379-87, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9788879

ABSTRACT

Mechanical forces clearly regulate the development and phenotype of a variety of tissues and cultured cells. However, it is not clear how mechanical information is transduced intracellularly to alter cellular function. Thermodynamic modeling predicts that mechanical forces influence microtubule assembly, and hence suggest microtubules as one potential cytoskeletal target for mechanical signals. In this study, the assembly of microtubules was analyzed in rat aortic smooth muscle cells cultured on silicon rubber substrates exposed to step increases in applied strain. Cytoskeletal and total cellular protein fractions were extracted from the cells following application of the external strain, and tubulin levels were quantified biochemically via a competitive ELISA and western blotting using bovine brain tubulin as a standard. In the first set of experiments, smooth muscle cells were subjected to a step-increase in strain and the distribution of tubulin between monomeric, polymeric, and total cellular pools was followed with time. Microtubule mass increased rapidly following application of the strain, with a statistically significant increase (P<0.05) in microtubule mass from 373+/-32 pg/cell (t=0) to 514+/-30 pg/cell (t=15 minutes). In parallel, the amount of soluble tubulin decreased approximately fivefold. The microtubule mass decreased after 1 hour to a value of 437+/-24 pg/cell. In the second set of experiments, smooth muscle cells were subjected to increasing doses of externally applied strain using a custom-built strain device. Monomeric, polymeric, and total tubulin fractions were extracted after 15 minutes of applied strain and quantified as for the earlier experiments. Microtubule mass increased with increasing strain while total cellular tubulin levels remained essentially constant at all strain levels. These findings are consistent with a thermodynamic model which predicts that microtubule assembly is promoted as a cell is stretched and compressional loads on the microtubules are presumably relieved. Furthermore, these data suggest microtubules are a potential target for translating changes in externally applied mechanical stimuli to alterations in cellular phenotype.


Subject(s)
Microtubules/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Animals , Aorta, Abdominal/cytology , Cell Culture Techniques/methods , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Gene Expression/physiology , Male , Microtubules/chemistry , Polymers/metabolism , Rats , Rats, Inbred Lew , Signal Transduction/physiology , Stress, Mechanical , Tubulin/analysis , Tubulin/genetics , Tubulin/metabolism
6.
Biotechnol Bioeng ; 57(1): 46-54, 1998 Jan 05.
Article in English | MEDLINE | ID: mdl-10099177

ABSTRACT

The engineering of functional smooth muscle (SM) tissue is critical if one hopes to successfully replace the large number of tissues containing an SM component with engineered equivalents. This study reports on the effects of SM cell (SMC) seeding and culture conditions on the cellularity and composition of SM tissues engineered using biodegradable matrices (5 x 5 mm, 2-mm thick) of polyglycolic acid (PGA) fibers. Cells were seeded by injecting a cell suspension into polymer matrices in tissue culture dishes (static seeding), by stirring polymer matrices and a cell suspension in spinner flasks (stirred seeding), or by agitating polymer matrices and a cell suspension in tubes with an orbital shaker (agitated seeding). The density of SMCs adherent to these matrices was a function of cell concentration in the seeding solution, but under all conditions a larger number (approximately 1 order of magnitude) and more uniform distribution of SMCs adherent to the matrices were obtained with dynamic versus static seeding methods. The dynamic seeding methods, as compared to the static method, also ultimately resulted in new tissues that had a higher cellularity, more uniform cell distribution, and greater elastin deposition. The effects of culture conditions were next studied by culturing cell-polymer constructs in a stirred bioreactor versus static culture conditions. The stirred culture of SMC-seeded polymer matrices resulted in tissues with a cell density of 6.4 +/- 0.8 x 10(8) cells/cm3 after 5 weeks, compared to 2.0 +/- 1.1 x 10(8) cells/cm3 with static culture. The elastin and collagen synthesis rates and deposition within the engineered tissues were also increased by culture in the bioreactors. The elastin content after 5-week culture in the stirred bioreactor was 24 +/- 3%, and both the elastin content and the cellularity of these tissues are comparable to those of native SM tissue. New tissues were also created in vivo when dynamically seeded polymer matrices were implanted in rats for various times. In summary, the system defined by these studies shows promise for engineering a tissue comparable in many respects to native SM. This engineered tissue may find clinical applications and provide a tool to study molecular mechanisms in vascular development.


Subject(s)
Biomedical Engineering/methods , Culture Techniques/methods , Muscle Development , Muscle, Smooth, Vascular/growth & development , Animals , Biocompatible Materials , Biodegradation, Environmental , Biotechnology , Microscopy, Electron, Scanning , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Polymers , Rats , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...