Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Appl Plant Sci ; 11(5): e11534, 2023.
Article in English | MEDLINE | ID: mdl-37915437

ABSTRACT

Premise: Many plant communities across the world are undergoing changes due to climate change, human disturbance, and other threats. These community-level changes are often tracked with the use of permanent vegetative plots, but this approach is not always feasible. As an alternative, we propose using photogrammetry, specifically photograph-based digital surface models (DSMs) developed using structure-from-motion, to establish virtual permanent plots in plant communities where the use of permanent structures may not be possible. Methods: In 2021 and 2022, we took iPhone photographs to record species presence in 1-m2 plots distributed across alpine communities in the northeastern United States. We then compared field estimates of percent coverage with coverage estimated using DSMs. Results: Digital surface models can provide effective, minimally invasive, and permanent records of plant species presence and percent coverage, while also allowing managers to mark survey locations virtually for long-term monitoring. We found that percent coverage estimated from DSMs did not differ from field estimates for most species and substrates. Discussion: In order to continue surveying efforts in areas where permanent structures or other surveying methods are not feasible, photogrammetry and structure-from-motion methods can provide a low-cost approach that allows agencies to accurately survey and record sensitive plant communities through time.

3.
iScience ; 24(5): 102418, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34113806

ABSTRACT

The Everest region is characterized by its alpine glacial environment. In an effort to understand environmental change and tectonic activity, our team cored Taboche Lake, situated at 4,712 m along the western margin of the Ngozumpa Glacier. This research catalogs past earthquakes using geological records of the lake core that are important for the assessment of future earthquake hazards in the region and provides information for tectonic risk of glacial lake floods. Core grain size characteristics and internal sedimentary structures from computed tomographic scan were coupled with radiocarbon dating of organic matter preserved in the core to reconstruct the environmental history of the area. The 58-cm-long core consists of laminated silty sands and sandy silts with particle diameters <2 mm. The core records a syn-sedimentary deformational structure, folded sediments, rhythmically alternating dark- and light-colored laminations, and turbidites, which indicate coeval climatic and tectonic variations over the past ∼1,600 years.

4.
Science ; 363(6433): 1286, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30898922
5.
Sci Adv ; 3(5): e1600871, 2017 May.
Article in English | MEDLINE | ID: mdl-28580418

ABSTRACT

A likely consequence of global warming will be the redistribution of Earth's rain belts, affecting water availability for many of Earth's inhabitants. We consider three ways in which planetary warming might influence the global distribution of precipitation. The first possibility is that rainfall in the tropics will increase and that the subtropics and mid-latitudes will become more arid. A second possibility is that Earth's thermal equator, around which the planet's rain belts and dry zones are organized, will migrate northward. This northward shift will be a consequence of the Northern Hemisphere, with its large continental area, warming faster than the Southern Hemisphere, with its large oceanic area. A third possibility is that both of these scenarios will play out simultaneously. We review paleoclimate evidence suggesting that (i) the middle latitudes were wetter during the last glacial maximum, (ii) a northward shift of the thermal equator attended the abrupt Bølling-Allerød climatic transition ~14.6 thousand years ago, and (iii) a southward shift occurred during the more recent Little Ice Age. We also inspect trends in seasonal surface heating between the hemispheres over the past several decades. From these clues, we predict that there will be a seasonally dependent response in rainfall patterns to global warming. During boreal summer, in which the rate of recent warming has been relatively uniform between the hemispheres, wet areas will get wetter and dry regions will become drier. During boreal winter, rain belts and drylands will expand northward in response to differential heating between the hemispheres.


Subject(s)
Global Warming , Models, Theoretical , Rain , Tropical Climate , Humans
6.
Proc Natl Acad Sci U S A ; 111(17): 6215-9, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24733909

ABSTRACT

The Younger Dryas Stadial (YDS; ∼ 12,900-11,600 y ago) in the Northern Hemisphere is classically defined by abrupt cooling and renewed glaciation during the last glacial-interglacial transition. Although this event involved a global reorganization of atmospheric and oceanic circulation [Denton GH, Alley RB, Comer GC, Broecker WS (2005) Quat Sci Rev 24:1159-1182], the magnitude, seasonality, and geographical footprint of YDS cooling remain unresolved and pose a challenge to our understanding of abrupt climate change. Here, we present a deglacial chronology from Scotland, immediately downwind of the North Atlantic Ocean, indicating that the Scottish ice cap disintegrated during the first half of the YDS. We suggest that stratification of the North Atlantic Ocean resulted in amplified seasonality that, paradoxically, stimulated a severe wintertime climate while promoting warming summers through solar heating of the mixed layer. This latter process drove deglaciation of downwind landmasses to completion well before the end of the YDS.


Subject(s)
Ice Cover , Seasons , Temperature , Atlantic Ocean , Calibration , Geography , Radiometric Dating , Scotland , Time Factors
7.
Proc Natl Acad Sci U S A ; 110(42): 16710-5, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24077260

ABSTRACT

Major changes in global rainfall patterns accompanied a northward shift of Earth's thermal equator at the onset of an abrupt climate change 14.6 kya. This northward pull of Earth's wind and rain belts stemmed from disintegration of North Atlantic winter sea ice cover, which steepened the interhemispheric meridional temperature gradient. A southward migration of Earth's thermal equator may have accompanied the more recent Medieval Warm to Little Ice Age climate transition in the Northern Hemisphere. As fossil fuel CO2 warms the planet, the continents of the Northern Hemisphere are expected to warm faster than the Southern Hemisphere oceans. Therefore, we predict that a northward shift of Earth's thermal equator, initiated by an increased interhemispheric temperature contrast, may well produce hydrologic changes similar to those that occurred during past Northern Hemisphere warm periods. If so, the American West, the Middle East, and southern Amazonia will become drier, and monsoonal Asia, Venezuela, and equatorial Africa will become wetter. Additional paleoclimate data should be acquired and model simulations should be conducted to evaluate the reliability of this analog.


Subject(s)
Carbon Dioxide , Climate Change , Fossil Fuels , Models, Theoretical , Oceans and Seas
8.
Science ; 334(6054): 347-51, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21903776

ABSTRACT

We constructed an 800,000-year synthetic record of Greenland climate variability based on the thermal bipolar seesaw model. Our Greenland analog reproduces much of the variability seen in the Greenland ice cores over the past 100,000 years. The synthetic record shows strong similarity with the absolutely dated speleothem record from China, allowing us to place ice core records within an absolute timeframe for the past 400,000 years. Hence, it provides both a stratigraphic reference and a conceptual basis for assessing the long-term evolution of millennial-scale variability and its potential role in climate change at longer time scales. Indeed, we provide evidence for a ubiquitous association between bipolar seesaw oscillations and glacial terminations throughout the Middle to Late Pleistocene.

9.
Nature ; 467(7312): 194-7, 2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20829791

ABSTRACT

Millennial-scale cold reversals in the high latitudes of both hemispheres interrupted the last transition from full glacial to interglacial climate conditions. The presence of the Younger Dryas stadial (approximately 12.9 to approximately 11.7 kyr ago) is established throughout much of the Northern Hemisphere, but the global timing, nature and extent of the event are not well established. Evidence in mid to low latitudes of the Southern Hemisphere, in particular, has remained perplexing. The debate has in part focused on the behaviour of mountain glaciers in New Zealand, where previous research has found equivocal evidence for the precise timing of increased or reduced ice extent. The interhemispheric behaviour of the climate system during the Younger Dryas thus remains an open question, fundamentally limiting our ability to formulate realistic models of global climate dynamics for this time period. Here we show that New Zealand's glaciers retreated after approximately 13 kyr bp, at the onset of the Younger Dryas, and in general over the subsequent approximately 1.5-kyr period. Our evidence is based on detailed landform mapping, a high-precision (10)Be chronology and reconstruction of former ice extents and snow lines from well-preserved cirque moraines. Our late-glacial glacier chronology matches climatic trends in Antarctica, Southern Ocean behaviour and variations in atmospheric CO(2). The evidence points to a distinct warming of the southern mid-latitude atmosphere during the Younger Dryas and a close coupling between New Zealand's cryosphere and southern high-latitude climate. These findings support the hypothesis that extensive winter sea ice and curtailed meridional ocean overturning in the North Atlantic led to a strong interhemispheric thermal gradient during late-glacial times, in turn leading to increased upwelling and CO(2) release from the Southern Ocean, thereby triggering Southern Hemisphere warming during the northern Younger Dryas.

10.
Science ; 324(5927): 622-5, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19407198

ABSTRACT

Understanding the timings of interhemispheric climate changes during the Holocene, along with their causes, remains a major problem of climate science. Here, we present a high-resolution 10Be chronology of glacier fluctuations in New Zealand's Southern Alps over the past 7000 years, including at least five events during the last millennium. The extents of glacier advances decreased from the middle to the late Holocene, in contrast with the Northern Hemisphere pattern. Several glacier advances occurred in New Zealand during classic northern warm periods. These findings point to the importance of regional driving and/or amplifying mechanisms. We suggest that atmospheric circulation changes in the southwest Pacific were one important factor in forcing high-frequency Holocene glacier fluctuations in New Zealand.

11.
J Orthop Res ; 20(4): 683-7, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12168655

ABSTRACT

A laboratory study assessed the reliability of detecting radiolucencies at the prosthesis/cement interface in femoral components for total hip replacement. Radiolucencies (thicknesses = 0.1, 0.3, 0.5 and 0.7 mm) were created by randomly masking non-tip Gruen zones (six per stem) in a group of 72 matte-finish femoral components. Only half of all Gruen zones were masked. The femoral components were reproducibly implanted in composite fiberglass replicate femurs. Anteroposterior and lateral radiographs taken using conventional techniques were then presented to 10 experienced readers, who scored each of 432 non-tip Gruen zones for radiolucency presence or absence. The series-average radiolucency detection rate was 47.1%, with a breakdown of 9.8%, 20.7%, 69.8% and 88.0, for radiolucency thicknesses of 0.1, 0.3, 0.5 and 0.7 mm, respectively. The false positive rate was 7.5%. The findings argue strongly that in many or most instances, initial cement-prosthesis debonding is not reliably detected from conventional plain film radiographs. Radiolucencies of at least 0.7 mm width are necessary to be accurately detectable by most viewers.


Subject(s)
Arthroplasty, Replacement, Hip , Bone Cements , False Positive Reactions , Femur/diagnostic imaging , Humans , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...