Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Accid Anal Prev ; 205: 107666, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901160

ABSTRACT

Only a few researchers have shown how environmental factors and road features relate to Autonomous Vehicle (AV) crash severity levels, and none have focused on the data limitation problems, such as small sample sizes, imbalanced datasets, and high dimensional features. To address these problems, we analyzed an AV crash dataset (2019 to 2021) from the California Department of Motor Vehicles (CA DMV), which included 266 collision reports (51 of those causing injuries). We included external environmental variables by collecting various points of interest (POIs) and roadway features from Open Street Map (OSM) and Data San Francisco (SF). Random Over-Sampling Examples (ROSE) and the Synthetic Minority Over-Sampling Technique (SMOTE) methods were used to balance the dataset and increase the sample size. These two balancing methods were used to expand the dataset and solve the small sample size problem simultaneously. Mutual information, random forest, and XGboost were utilized to address the high dimensional feature and the selection problem caused by including a variety of types of POIs as predictive variables. Because existing studies do not use consistent procedures, we compared the effectiveness of using the feature-selection preprocessing method as the first process to employing the data-balance technique as the first process. Our results showed that AV crash severity levels are related to vehicle manufacturers, vehicle damage level, collision type, vehicle movement, the parties involved in the crash, speed limit, and some types of POIs (areas near transportation, entertainment venues, public places, schools, and medical facilities). Both resampling methods and three data preprocessing methods improved model performance, and the model that used SMOTE and data-balancing first was the best. The results suggest that over-sampling and the feature selection method can improve model prediction performance and define new factors related to AV crash severity levels.


Subject(s)
Accidents, Traffic , Accidents, Traffic/statistics & numerical data , Accidents, Traffic/classification , Humans , Sample Size , California/epidemiology , Automobiles/statistics & numerical data , Datasets as Topic
2.
J Safety Res ; 88: 199-216, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38485363

ABSTRACT

INTRODUCTION: Electric bicycles, or e-bikes, have become very popular over the past decade. In order to reduce the risk of crashes, it is necessary to understand the contributing factors. While several researchers have examined these elements, few have considered the spatial heterogeneity between crashes and environmental variables, such as Points of Interest (POI). In addition, there is a scarcity of studies comparing the crash-related factors of e-bikes and motorcycles. Despite their differing speed and range capabilities, different POIs also tend to impact area/bandwidths differently because e-bikes cannot cover the same range that motorcycles can. METHOD: In this study, we compared e-bike and motorcycle crashes at 11 different types of POIs in Taipei from 2016 to 2020. Since crashes are sparse events and easily affected by the Modifiable Areal Unit Problem (MAUP), Kernel Density Estimation (KDE) was employed to transform crash points (count data) to crash risk surfaces (continuous data). Additionally, an advanced variant of Geographical Weighted Regression (GWR), Multiscale Geographically Weighted Regression (MGWR) utilized to predict crash risk because each predictor is allowed to have a different bandwidth. RESULTS: The results showed: (a) For e-bike crashes, the MGWR model outperformed the GWR and OLS models in terms of AIC values, while the MGWR and GWR performed similarly with regard to motorcycle crashes; (b) The analysis revealed e-bike and motorcycle crash risk to be associated with various types of POIs. E-bike crashes tended to occur more frequently in areas with more schools, supermarkets, intersections, and elderly people. Meanwhile, motorcycle crashes were more likely to occur in areas with a high number of restaurants and intersections. The search bandwidths of e-bikes are inconsistent and narrower than those of motorcycles.


Subject(s)
Accidents, Traffic , Motorcycles , Humans , Aged , Bicycling , Risk Reduction Behavior
3.
PLoS One ; 16(8): e0255653, 2021.
Article in English | MEDLINE | ID: mdl-34388188

ABSTRACT

Air pollution has a severe impact on human physical and mental health. When the air quality is poor enough to cause respiratory irritation, people tend to stay home and avoid any outdoor activities. In addition, air pollution may cause mental health problems (depression and anxiety) which were associated with high crime risk. Therefore, in this study, it is hypothesized that increasing air pollution level is associated with higher indoor crime rates, but negatively associated with outdoor crime rates because it restricts people's daily outdoor activities. Three types of crimes were used for this analysis: robbery (outdoor crime), domestic violence (indoor crime), and fraud (cybercrime). The results revealed that the geographically and temporally weighted regression (GTWR) model performed best with lower AIC values. In general, in the higher population areas with more severe air pollution, local authorities should allocate more resources, extra police officers, or more training programs to help them prevent domestic violence, rather than focusing on robbery.


Subject(s)
Air Pollutants/adverse effects , Air Pollution, Indoor/adverse effects , Domestic Violence/statistics & numerical data , Fraud/statistics & numerical data , Theft/statistics & numerical data , Adult , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Australia , Domestic Violence/prevention & control , Female , Fraud/prevention & control , Humans , Male , Middle Aged , Models, Statistical , Police , Socioeconomic Factors , Theft/prevention & control , Weather
4.
Sensors (Basel) ; 21(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800883

ABSTRACT

In order to minimize the impacts of climate change on various crops, farmers must learn to monitor environmental conditions accurately and effectively, especially for plants that are particularly sensitive to the weather. On-site sensors and weather stations are two common methods for collecting data and observing weather conditions. Although sensors are capable of collecting accurate weather information on-site, they can be costly and time-consuming to install and maintain. An alternative is to use the online weather stations, which are usually government-owned and free to the public; however, their accuracy is questionable because they are frequently located far from the farmers' greenhouses. Therefore, we compared the accuracy of kriging estimators using the weather station data (collected by the Central Weather Bureau) to local sensors located in the greenhouse. The spatio-temporal kriging method was used to interpolate temperature data. The real value at the central point of the greenhouse was used for comparison. According to our results, the accuracy of the weather station estimator was slightly lower than that of the local sensor estimator. Farmers can obtain accurate estimators of environmental data by using on-site sensors; however, if they are unavailable, using a nearby weather station estimator is also acceptable.

SELECTION OF CITATIONS
SEARCH DETAIL
...