Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e28513, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596028

ABSTRACT

Marine biofouling poses significant challenges to maritime industries worldwide, affecting vessel performance, fuel efficiency, and environmental sustainability. These challenges demand innovative and sustainable solutions. In this review, the evolving landscape of cellulose-based materials for anti-fouling applications in marine environments is explored. Through a comprehensive bibliometric analysis, the current state of research is examined, highlighting key trends, emerging technologies, and geographical distributions. Cellulose, derived from renewable resources, offers a promising avenue for sustainable anti-fouling strategies due to its biodegradability, low toxicity, and resistance to microbial attachment. Recent advancements in cellulose-based membranes, coatings, and composites are discussed, showcasing their efficacy in mitigating biofouling while minimizing environmental impact. Opportunities for interdisciplinary collaboration and innovation are identified to drive the development of next-generation anti-fouling solutions. By harnessing the power of cellulose, progress towards cleaner, more sustainable oceans can be facilitated, fostering marine ecosystems and supporting global maritime industries.

2.
RSC Adv ; 14(18): 12665-12675, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645520

ABSTRACT

This study demonstrates the preparation of SiO2/ZnO core-shell nanoparticles with controllable shell size and their optical properties. A facile ultrasonication method was utilized to prepare the core-shell particles in the absence of surfactant materials. The synthesis duration was 75% shorter than that required for the common sol-gel method, which favours its potential applicability in the future for mass production. Tetraethyl orthosilicate (TEOS) was used as the silica source, while the core material was prepared using zinc acetate dihydrate. The outer shell size could easily be controlled by changing the molar ratio of silica from 0.25 to 1.00. The experimental results show that increasing the silica ratio was effective in suppressing the self-agglomeration of ZnO and, further, in obtaining agglomeration-free particles. The investigation of the photoluminescence (PL) properties of nanometre-sized ZnO revealed several emission peaks in the ultraviolet (UV) wavelength range, indicating variations in bandgap energy. This did not appear in the spectrum of micrometre-sized ZnO particles. The core-shell particles produced with higher amounts of silica showed higher UV-A and UV-B absorption. In addition, the presence of silica reduced the photocatalytic activity of ZnO by 65% and reduced the PL intensity. The obtained emission peaks, intensity changes, and spectral characteristics open new avenues for further research on tailoring the properties of SiO2/ZnO core-shell structures for specific technological advancements. These advancements hold promising applications in UV attenuation materials, LED technologies, lenses, and solar cells within the realm of optical devices.

3.
Sci Rep ; 13(1): 10871, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407592

ABSTRACT

The purpose of this work was to establish the best particle size for recovering high yields of total phenolic compounds (TPC), total anthocyanin compounds(TAC) and total flavonoid compounds (TFC) from roselle (Hibiscus sabdariffa) by applying supercritical carbon dioxide (ScCO2). The extraction rate, diffusivity and solubility of yield in ScCO2 were also studied and calculated utilizing models. Pressure (10 and 30 MPa), temperature (40 and 60 °C), and particle size (250 µm < dp < 355 µm, 355 µm < dp < 425 µm and 425 µm < dp < 500 µm) were employed as variables in this experiment. The greatest recovery was 11.96% yield, 7.16 mg/100 g TAC, 42.93 mg/100 g TPC and 239.36 mg/100 g TFC under the conditions of 30 MPA, 40 °C and 250 µm < dp < 355 µm, respectively. The extraction rate of supercritical carbon dioxide in roselle extraction ranged from 5.19 E-03 to 1.35 E-03 mg/s fitted using the Esquivel model. The diffusivity coefficient of ScCO2 ranged from 2.17E-12 to 3.72E-11 mg/s2, as fitted by a single sphere model. The greatest solubility of global yield, TAC, TPC and TFC in ScCO2 was 1.50 g/L, 0.3 mg/L, 1.69 mg/L and 9.97 mg/L, respectively, with a particle size of 250 µm < dp < 355 µm. The smaller particle size of roselle provides the maximum bioactive compound recovery and solubility. Furthermore, the diffusivity and extraction of ScCO2 are increased by decreasing the particle size. Therefore, a smaller particle size is appropriate for roselle extraction by ScCO2 based on the experimental and modelling data.


Subject(s)
Hibiscus , Carbon Dioxide , Particle Size , Solubility , Phenols , Plant Extracts
4.
Molecules ; 28(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298801

ABSTRACT

Peanuts (Arachis hypogea) can be made into various products, from oil to butter to roasted snack peanuts and candies, all from the kernels. However, the skin is usually thrown away, used as cheap animal feed, or as one of the ingredients in plant fertilizer due to its little value on the market. For the past ten years, studies have been conducted to determine the full extent of the skin's bioactive substance repertoire and its powerful antioxidant potential. Alternatively, researchers reported that peanut skin could be used and be profitable in a less-intensive extraction technique. Therefore, this review explores the conventional and green extraction of peanut oil, peanut production, peanut physicochemical characteristics, antioxidant activity, and the prospects of valorization of peanut skin. The significance of the valorization of peanut skin is that it contains high antioxidant capacity, catechin, epicatechin resveratrol, and procyanidins, which are also advantageous. It could be exploited in sustainable extraction, notably in the pharmaceutical industries.


Subject(s)
Antioxidants , Arachis , Animals , Arachis/chemistry , Antioxidants/chemistry , Resveratrol , Peanut Oil
5.
Molecules ; 28(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37110784

ABSTRACT

More than 58 million metric tonnes of oranges were produced in 2021, and the peels, which account for around one-fifth of the fruit weight, are often discarded as waste in the orange juice industry. Orange pomace and peels as wastes are used as a sustainable raw material to make valuable products for nutraceuticals. The orange peels and pomace contain pectin, phenolics, and limonene, which have been linked to various health benefits. Various green extraction methods, including supercritical carbon dioxide (ScCO2) extraction, subcritical water extraction (SWE), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), are applied to valorize the orange peels and pomace. Therefore, this short review will give insight into the valorization of orange peels/pomace extraction using different extraction methods for health and wellness. This review extracts information from articles written in English and published from 2004 to 2022. The review also discusses orange production, bioactive compounds in orange peels/pomaces, green extractions, and potential uses in the food industry. Based on this review, the valorization of orange peels and pomaces can be carried out using green extraction methods with high quantities and qualities of extracts. Therefore, the extract can be used for health and wellness products.


Subject(s)
Citrus sinensis , Fruit/chemistry , Phenols/analysis , Pectins , Antioxidants
6.
Food Res Int ; 164: 112283, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36737895

ABSTRACT

Zingiber officinale Roscoe is an excellent source of bioactive compounds, mainly gingerols and shogaols compounds, that associated with various bioactivities including antioxidant, anticancer, anti-inflammatory, antimicrobial, and antibiofilm. Zingiber officinale Roscoe found its application in the food, pharmaceutical, and cosmeceutical industries. The demand for a high quality of ginger oleoresin extracts based on the contents of gingerols and shogaols compounds for a health-benefit has dramatically increased. Various extraction techniques, including the conventional and advanced extraction techniques for gingerols and shogaols have been reported based on the literature data from 2012 to 2022. The present review examines the functional composition and bioactivities of Zingiber officinale Roscoe and the advanced green extraction technologies. Some variations in the quantity and quality of gingerols and shogaols compounds are because of the extraction method employed. This review provides a depth discussion of the various green advanced extraction technologies and the influences of process variables on the performance of the extraction process. Lower temperature with a short exposure time such as ultrasound-assisted and enzyme-assisted extraction, will lead to high quality of extracts with high content of 6-gingerol. High thermal processing, such as microwave-assisted and pressurized liquid extraction, will produce higher 6-shogaol. Meanwhile, supercritical fluid extraction promotes high quality and the safety of extracts by using non-toxic CO2. In addition, challenges and future prospects of the extraction of ginger oleoresin have been identified and discussed. The emerging green extraction methods and technologies show promising results with less energy input and higher quality extracts than conventional extraction methods.


Subject(s)
Anti-Infective Agents , Zingiber officinale , Plant Extracts
7.
Molecules ; 28(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36771003

ABSTRACT

Roselle (Hibiscus sabdariffa L.) is a source of anthocyanins as red pigments that is extensively farmed in tropical and subtropical regions, including Indonesia, Malaysia, China, Thailand, Egypt, Mexico, and West India. The roselle plant contains a variety of nutrients, including anthocyanins, organic acids, pectin, etc. Due to the toxicity and combustibility of the solvents, traditional extraction methods for these compounds are restricted. Obtaining pure extracts is typically a lengthy procedure requiring many processes. Supercritical carbon dioxide (ScCO2) extraction as a green technology is rapidly improving and extending its application domains. The advantages of this method are zero waste production, quicker extraction times, and reduced solvent consumption. The ScCO2 extraction of natural pigments has great promise in food, pharmaceuticals, cosmetics, and textiles, among other uses. The ScCO2 technique for natural pigments may also be advantageous in a variety of other contexts. Due to their minimal environmental risk, the high-quality red pigments of roselle rich in anthocyanins extracted using ScCO2 extraction have a high sustainability potential. Therefore, the objective of this review is to increase knowledge related to the natural colorant of roselle as a substitute for chemically manufactured colorants using ScCO2 as a green method. This article covers ScCO2 extraction, particularly as it relates to the optimization of pigments that promote health. This article focuses on the high extraction efficiency of ScCO2 extraction. Natural colorants extracted via ScCO2 are regarded as safe compounds, especially for human consumption, such as novel functional food additives and textile and pharmaceutical colors.


Subject(s)
Anthocyanins , Hibiscus , Humans , Anthocyanins/chemistry , Hibiscus/chemistry , Plant Extracts/chemistry , Health Promotion , Food , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...