Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36850295

ABSTRACT

Alginate dialdehyde and l-lysine-functionalized alginate dialdehyde were prepared to provide active aldehyde and l-lysine sites along the alginate backbone, respectively. Different concentrations of substrates and the reduction agent were added, and their influence on the degree of l-lysine substitution was evaluated. An amination reduction reaction (with l-lysine) was conducted on alginate dialdehyde with a 31% degree of oxidation. The NMR confirmed the presence of l-lysine functionality with the degree of substitution of 20%. The structural change of the polymer was observed via FTIR spectroscopy, confirming the formation of Schiff base covalent linkage after the crosslinking. The additional l-lysine sites on functionalized alginate dialdehyde provide more crosslinking sites on the hydrogel, which leads to a higher modulus storage rate than in the original alginate dialdehyde. This results in dynamic covalent bonds, which are attributed to the alginate derivative-gelatin hydrogels with shear-thinning and self-healing properties. The results suggested that the concentration and stoichiometric ratio of alginate dialdehyde, l-lysine-functionalized alginate dialdehyde, and gelatin play a fundamental role in the hydrogel's mechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...