Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Cardiol ; 101(11A): 42E-48E, 2008 Jun 02.
Article in English | MEDLINE | ID: mdl-18514626

ABSTRACT

Sarcopenia is an inevitable age-related degenerative process chiefly characterized by decreased synthesis of muscle proteins and impaired mitochondrial function, leading to progressive loss of muscle mass. Here, we sought to probe whether long-term administration of oral amino acids (AAs) can increase protein and adenosine triphosphate (ATP) content in the gastrocnemius muscle of aged rats, enhancing functional performance. To this end, 6- and 24-month-old male Fisher 344 rats were divided into 3 groups: group A (6-month-old rats) and group B (24-month-old rats) were used as adult and senescent control group, respectively, while group C (24-month-old rats) was used as senescent treated group and underwent 1-month oral treatment with a mixture of mainly essential AAs. Untreated senescent animals exhibited a 30% reduction in total and fractional protein content, as well as a 50% reduction in ATP content and production, compared with adult control rats (p <0.001). Long-term supplementation with mixed AAs significantly improved protein and high-energy phosphate content, as well as the rate of mitochondrial ATP production, conforming their values to those of adult control animals (p <0.001). The improved availability of protein and high-energy substrates in the gastrocnemius muscle of treated aged rats paralleled a significant enhancement in functional performance assessed by swim test, with dramatic elongation of maximal exertion times compared with untreated senescent rats (p <0.001). In line with these findings, we observed that, after 6 hours of rest following exhaustive swimming, the recovery in mitochondrial ATP content was approximately 70% in adult control rats, approximately 60% in senescent control rats, and normalized in treated rats as compared with animals of the same age unexposed to maximal exertion (p <0.001). In conclusion, nutritional supplementation with oral AAs improved protein and energy profiles in the gastrocnemius of treated rats, enhancing functional performance and accelerating high-energy phosphate recovery after exhaustive exertion.


Subject(s)
Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Adenosine Triphosphate/metabolism , Administration, Oral , Aging/pathology , Aging/physiology , Animals , Dietary Supplements , Energy Metabolism , Male , Mitochondria, Muscle/metabolism , Muscle Proteins/metabolism , Rats , Rats, Inbred F344
2.
Am J Cardiol ; 101(11A): 63E-68E, 2008 Jun 02.
Article in English | MEDLINE | ID: mdl-18514629

ABSTRACT

We have previously demonstrated that the transcription factor STAT1 plays a critical role in promoting apoptotic cell death, whereas the related STAT3 family member may antagonize STAT1 and protect cardiac myocytes from ischemia/reperfusion (I/R) injury. More recently we demonstrated that long-term nutritional supplementation with mixed amino acids (AAs) can enhance myocyte survival by preserving mitochondrial functional capacity during I/R injury. We therefore investigated whether short-term nutritional supplementation with the same AA mixture has any effects on STAT1 or STAT3 activation in the Langendorff perfused rat heart exposed to I/R injury. In Sprague-Dawley rats given a single oral dose of a mixture of mainly essential l-AA (1 g/kg), and exposed, after 6 hours, to 35 minutes of ischemia, followed by 120 minutes of reperfusion, AA supplementation prolonged STAT3 activation/phosphorylation, while STAT1 activation was reduced. Enhanced STAT3 phosphorylation paralleled a reduction in expression of Fas, a known STAT1 target gene and proapoptotic marker that is upregulated after I/R. Moreover, abrogation of STAT3 activation by means of the JAK inhibitor AG490, reduced, but did not abolish, the cardioprotective effects of AA supplementation after I/R. These results show that modulation of the functional balance between STAT3 and STAT1, with preferential activation of prosurvival STAT3 over the proapoptotic STAT1, represents a mechanism by means of which short-term oral supplementation with mixed AAs protects the heart from I/R injury.


Subject(s)
Amino Acids/administration & dosage , Dietary Supplements , Myocardium/metabolism , Reperfusion Injury/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Animals , Apoptosis/physiology , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Male , Myocytes, Cardiac/physiology , Phosphorylation , Rats , Rats, Sprague-Dawley , Tyrphostins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...