Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Histochem Cell Biol ; 161(5): 423-434, 2024 May.
Article in English | MEDLINE | ID: mdl-38393396

ABSTRACT

Aberrant glycosylation is an important factor in facilitating tumor progression and therapeutic resistance. In this study, using Wisteria floribunda agglutinin (WFA), we examined the expression of WFA-binding glycans (WFAG) in cholangiocarcinoma (CCA). The results showed that WFAG was highly detected in precancerous and cancerous lesions of human CCA tissues, although it was rarely detected in normal bile ducts. The positive signal of WFAG in the cancerous lesion accounted for 96.2% (50/52) of the cases. Overexpression of WFAG was significantly associated with lymph node and distant metastasis (P < 0.05). The study using the CCA hamster model showed that WFAG is elevated in preneoplastic and neoplastic bile ducts as early as 1 month after being infected with liver fluke and exposed to N-nitrosodimethylamine. Functional analysis was performed to reveal the role of WFAG in CCA. The CCA cell lines KKU-213A and KKU-213B were treated with WFA, followed by migration assay. Our data suggested that WFAG facilitates the migration of CCA cells via the activation of the Akt and ERK signaling pathways. In conclusion, we have demonstrated the association of WFAG with carcinogenesis and metastasis of CCA, suggesting its potential as a target for the treatment of the disease.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Plant Lectins , Polysaccharides , Receptors, N-Acetylglucosamine , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Animals , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Humans , Plant Lectins/metabolism , Polysaccharides/metabolism , Polysaccharides/chemistry , Receptors, N-Acetylglucosamine/metabolism , Cricetinae , Male , Carcinogenesis/metabolism , Carcinogenesis/pathology , Neoplasm Metastasis , Female , Middle Aged , Cell Movement/drug effects
2.
Cancer Sci ; 114(8): 3230-3246, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37026527

ABSTRACT

Cholangiocarcinoma (CCA) is an aggressive malignant tumor of bile duct epithelia. Recent evidence suggests the impact of cancer stem cells (CSC) on the therapeutic resistance of CCA; however, the knowledge of CSC in CCA is limited due to the lack of a CSC model. In this study, we successfully established a stable sphere-forming CCA stem-like cell, KKU-055-CSC, from the original CCA cell line, KKU-055. The KKU-055-CSC exhibits CSC characteristics, including: (1) the ability to grow stably and withstand continuous passage for a long period of culture in the stem cell medium, (2) high expression of stem cell markers, (3) low responsiveness to standard chemotherapy drugs, (4) multilineage differentiation, and (5) faster and constant expansive tumor formation in xenograft mouse models. To identify the CCA-CSC-associated pathway, we have undertaken a global proteomics and functional cluster/network analysis. Proteomics identified the 5925 proteins in total, and the significantly upregulated proteins in CSC compared with FCS-induced differentiated CSC and its parental cells were extracted. Network analysis revealed that high mobility group A1 (HMGA1) and Aurora A signaling through the signal transducer and activator of transcription 3 pathways were enriched in KKU-055-CSC. Knockdown of HMGA1 in KKU-055-CSC suppressed the expression of stem cell markers, induced the differentiation followed by cell proliferation, and enhanced sensitivity to chemotherapy drugs including Aurora A inhibitors. In silico analysis indicated that the expression of HMGA1 was correlated with Aurora A expressions and poor survival of CCA patients. In conclusion, we have established a unique CCA stem-like cell model and identified the HMGA1-Aurora A signaling as an important pathway for CSC-CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Mice , Animals , HMGA1a Protein , Cholangiocarcinoma/metabolism , Neoplastic Stem Cells/metabolism , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation
3.
Exp Cell Res ; 410(1): 112949, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34843714

ABSTRACT

Glioma stem/initiating cells have been considered a major cause of tumor recurrence and therapeutic resistance. In this study, we have established a new glioma stem-like cell (GSC), named U373-GSC, from the U373 glioma cell line. The cells exhibited stemness properties, e.g., expression of stem cell markers, self-renewal activity, multi-lineage differentiating abilities, and drug resistance. Using U373-GSC and GSC-03A-a GSC clone previously established from patient tissue, we have identified a novel GSC-associated sialic acid-modified glycan commonly expressed in both cell lines. Lectin fluorescence staining showed that Maackia amurensis lectin II (MAL-II)-binding alpha2,3-sialylated glycan (MAL-SG) was highly expressed in GSCs, and drastically decreased during FBS induced differentiation to glioma cells or little in the parental cells. Treatment of GSCs by MAL-II, compared with other lectins, showed that MAL-II significantly suppresses cell viability and sphere formation via induction of cell cycle arrest and apoptosis of the GSCs. Similar effects were observed when the cells were treated with a sialyltransferase inhibitor or sialidase. Taken together, we demonstrate for the first time that MAL-SGs/alpha-2,3 sialylations are upregulated and control survival/maintenances of GSCs, and their functional inhibitions lead to apoptosis of GSCs. MAL-SG could be a potential marker and therapeutic target of GSCs; its inhibitors, such as MAL-II, may be useful for glioma treatment in the future.


Subject(s)
Glioma/drug therapy , Lectins/pharmacology , Maackia/chemistry , Neoplastic Stem Cells/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Humans , Lectins/chemistry , Polysaccharides/antagonists & inhibitors , Polysaccharides/chemistry , Sialyltransferases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...