Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(10): e0223483, 2019.
Article in English | MEDLINE | ID: mdl-31596901

ABSTRACT

Hapten contact hypersensitivity (CHS) elicits a well-documented inflammation response that can be used to illustrate training of immune cells through hapten-specific CHS memory. The education of hapten-specific memory T cells has been well-established, recent research in mice has expanded the "adaptive" characteristic of a memory response from solely a function of the adaptive immune system, to innate cells as well. To test whether similar responses are seen in a non-rodent model, we used hapten-specific CHS to measure the ear inflammation response of outbred pigs to dinitrofluorobenzene (DNFB), oxazolone (OXA), or vehicle controls. We adapted mouse innate memory literature protocols to the domestic pig model. Animals were challenged up to 32 days post initial sensitization exposure to the hapten, and specific ear swelling responses to this challenge were significant for 7, 21, and 32 days post-sensitization. We established hapten-specific CHS memory exists in a non-rodent model. We also developed a successful protocol for demonstrating these CHS responses in a porcine system.


Subject(s)
Haptens/immunology , Hypersensitivity/immunology , Immunologic Memory , Otitis/immunology , Adjuvants, Immunologic , Animals , Dinitrofluorobenzene/immunology , Disease Models, Animal , Female , Hypersensitivity/complications , Male , Otitis/etiology , Oxazolone/immunology , Swine
2.
J Anim Breed Genet ; 135(1): 5-13, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29178316

ABSTRACT

The objective of this study was to compare and determine the optimal validation method when comparing accuracy from single-step GBLUP (ssGBLUP) to traditional pedigree-based BLUP. Field data included six litter size traits. Simulated data included ten replicates designed to mimic the field data in order to determine the method that was closest to the true accuracy. Data were split into training and validation sets. The methods used were as follows: (i) theoretical accuracy derived from the prediction error variance (PEV) of the direct inverse (iLHS), (ii) approximated accuracies from the accf90(GS) program in the BLUPF90 family of programs (Approx), (iii) correlation between predictions and the single-step GEBVs from the full data set (GEBVFull ), (iv) correlation between predictions and the corrected phenotypes of females from the full data set (Yc ), (v) correlation from method iv divided by the square root of the heritability (Ych ) and (vi) correlation between sire predictions and the average of their daughters' corrected phenotypes (Ycs ). Accuracies from iLHS increased from 0.27 to 0.37 (37%) in the Large White. Approximation accuracies were very consistent and close in absolute value (0.41 to 0.43). Both iLHS and Approx were much less variable than the corrected phenotype methods (ranging from 0.04 to 0.27). On average, simulated data showed an increase in accuracy from 0.34 to 0.44 (29%) using ssGBLUP. Both iLHS and Ych approximated the increase well, 0.30 to 0.46 and 0.36 to 0.45, respectively. GEBVFull performed poorly in both data sets and is not recommended. Results suggest that for within-breed selection, theoretical accuracy using PEV was consistent and accurate. When direct inversion is infeasible to get the PEV, correlating predictions to the corrected phenotypes divided by the square root of heritability is adequate given a large enough validation data set.


Subject(s)
Breeding , Genomics , Litter Size/genetics , Models, Statistical , Pedigree , Swine/genetics , Swine/physiology , Animals , Female , Male
3.
J Anim Sci ; 93(11): 5153-63, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26641035

ABSTRACT

Litter size at d 5 (LS5) has been shown to be an effective trait to increase total number born (TNB) while simultaneously decreasing preweaning mortality. The objective of this study was to determine the optimal litter size day for selection (i.e., other than d 5). Traits included TNB, number born alive (NBA), litter size at d 2, 5, 10, 30 (LS2, LS5, LS10, LS30, respectively), litter size at weaning (LSW), number weaned (NW), piglet mortality at d 30 (MortD30), and average piglet birth weight (BirthWt). Litter size traits were assigned to biological litters and treated as a trait of the sow. In contrast, NW was the number of piglets weaned by the nurse dam. Bivariate animal models included farm, year-season, and parity as fixed effects. Number born alive was fit as a covariate for BirthWt. Random effects included additive genetics and the permanent environment of the sow. Variance components were plotted for TNB, NBA, and LS2 to LS30 using univariate animal models to determine how variances changed over time. Additive genetic variance was minimized at d 7 in Large White and at d 14 in Landrace pigs. Total phenotypic variance for litter size traits decreased over the first 10 d and then stabilized. Heritability estimates increased between TNB and LS30. Genetic correlations between TNB, NBA, and LS2 to LS29 with LS30 plateaued within the first 10 d. A genetic correlation with LS30 of 0.95 was reached at d 4 for Large White and at d 8 for Landrace pigs. Heritability estimates ranged from 0.07 to 0.13 for litter size traits and MortD30. Birth weight had an h of 0.24 and 0.26 for Large White and Landrace pigs, respectively. Genetic correlations among LS30, LSW, and NW ranged from 0.97 to 1.00. In the Large White breed, genetic correlations between MortD30 with TNB and LS30 were 0.23 and -0.64, respectively. These correlations were 0.10 and -0.61 in the Landrace breed. A high genetic correlation of 0.98 and 0.97 was observed between LS10 and NW for Large White and Landrace breeds, respectively. This would indicate that NW could possibly be used as an effective maternal trait, given a low level of cross-fostering, to avoid back calculating litter size traits from piglet records. Litter size at d 10 would be a compromise between gain in litter size at weaning and minimizing the potentially negative effects of the nurse dam and direct additive genetics of the piglets, as they are expected to increase throughout lactation.


Subject(s)
Genetic Variation , Litter Size/genetics , Swine/genetics , Animals , Birth Weight/genetics , Breeding , Female , Lactation/genetics , Parturition/genetics , Phenotype , Pregnancy , Swine/physiology , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...