Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Liver Int ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888238

ABSTRACT

Heme is a primordial macrocycle upon which most aerobic life on Earth depends. It is essential to the survival and health of nearly all cells, functioning as a prosthetic group for oxygen-carrying proteins and enzymes involved in oxidation/reduction and electron transport reactions. Heme is essential for the function of numerous hemoproteins and has numerous other roles in the biochemistry of life. In mammals, heme is synthesised from glycine, succinyl-CoA, and ferrous iron in a series of eight steps. The first and normally rate-controlling step is catalysed by 5-aminolevulinate synthase (ALAS), which has two forms: ALAS1 is the housekeeping form with highly variable expression, depending upon the supply of the end-product heme, which acts to repress its activity; ALAS2 is the erythroid form, which is regulated chiefly by the adequacy of iron for erythroid haemoglobin synthesis. Abnormalities in the several enzymes of the heme synthetic pathway, most of which are inherited partial enzyme deficiencies, give rise to rare diseases called porphyrias. The existence and role of heme importers and exporters in mammals have been debated. Recent evidence established the presence of heme transporters. Such transporters are important for the transfer of heme from mitochondria, where the penultimate and ultimate steps of heme synthesis occur, and for the transfer of heme from cytoplasm to other cellular organelles. Several chaperones of heme and iron are known and important for cell health. Heme and iron, although promoters of oxidative stress and potentially toxic, are essential cofactors for cellular energy production and oxygenation.

2.
Trends Mol Med ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38890030

ABSTRACT

Protoporphyrias are caused by pathogenic variants in genes encoding enzymes involved in heme biosynthesis. They induce the accumulation of a hydrophobic phototoxic compound, protoporphyrin (PPIX), in red blood cells (RBCs). PPIX is responsible for painful cutaneous photosensitivity, which severely impairs quality of life. Hepatic elimination of PPIX increases the risk of cholestatic liver disease, requiring lifelong monitoring. Treatment options are scarce and mainly limited to supportive care such as protection from visible light. Here, we review the pathophysiology of protoporphyrias, their diagnosis, and current recommendations for medical care. We discuss new therapeutic strategies, some of which are currently undergoing clinical trials and are likely to radically alter the severity of the disease in the years to come.

3.
Mol Genet Metab Rep ; 37: 101018, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053924

ABSTRACT

Erythropoietic protoporphyria (EPP) is a rare metabolic disease of the heme biosynthetic pathway where an enzymatic dysfunction results in protoporphyrin IX (PPIX) accumulation in erythroid cells. The porphyrins are photo-reactive and are responsible for severe photosensitivity in patients, thus drastically decreasing their quality of life. The liver eliminates PPIX and as such, the main and rare complication of EPP is progressive cholestatic liver disease, which can lead to liver failure. The management of this complication is challenging, as it often requires a combination of approaches to promote PPIX elimination and suppress the patient's erythropoiesis. Here we described a 3-year follow-up of an EPP patient, with three episodes of liver involvement, aggravated by the coexistence of a factor VII deficiency. It covers all the different types of intervention available for the management of liver disease, right through to successful allogeneic hematopoietic stem cell transplantation.

4.
Clin Chem ; 69(10): 1186-1196, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37608428

ABSTRACT

BACKGROUND: The quantification of delta-aminolevulinic acid (ALA) and porphobilinogen (PBG) in urine are the first-line tests for diagnosis and monitoring of acute hepatic porphyrias (AHP). Ion-exchange chromatography (IEC), which is time- and staff-consuming and limited to urine, is still the preferred method in many specialized laboratories, despite the development of mass spectrometry-based methods. METHODS: We describe a new LC-MS method that allows for rapid and simple quantification of ALA and PBG in urine and plasma with an affordable instrument that was used to analyze 2260 urine samples and 309 blood samples collected in 2 years of routine activity. The results were compared to those obtained with IEC, and urine reference ranges and concentrations in asymptomatic carriers were determined. Plasma concentrations were measured in healthy subjects and subgroups of symptomatic and asymptomatic AHP carriers. RESULTS: In urine, the clinical decision limits were not impacted by the change of method despite discrepancies in low absolute concentrations, leading to lower normal values. Two-thirds of asymptomatic AHP carriers (with the exception of coproporphyria carriers) showed an increased urine PBG concentration. Urine and plasma levels showed a good correlation except in patients with kidney disease in whom the urine/plasma ratio was relatively low. CONCLUSION: We described an LC-MS based method for the routine diagnosis and monitoring of AHP that allows for the detection of more asymptomatic carriers than the historical method. Blood analysis appears to be particularly relevant for patients with kidney disease, where urine measurement underestimates the increase in ALA and PBG levels.


Subject(s)
Porphyrias, Hepatic , Porphyrias , Porphyrins , Renal Insufficiency , Humans , Chromatography, Liquid/methods , Aminolevulinic Acid/urine , Tandem Mass Spectrometry/methods , Porphobilinogen/urine , Porphyrias/diagnosis
5.
Clin Chim Acta ; 548: 117509, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37549821

ABSTRACT

BACKGROUND: Iron metabolism dysregulation may play a role in organ failure observed in Coronavirus disease 2019 (COVID-19). This study aimed to explore the whole iron metabolism in hospitalized COVID-19 patients and evaluate the impact of tocilizumab. METHODS: We performed an observational multicentric cohort study, including patients with PCR-provenCOVID-19 from the intensive care unit (ICU) (n = 66) and medical ward (n = 38). We measured serum interleukin-6 (IL-6), ferritin, glycosylated ferritin (GF), transferrin, iron, and hepcidin. The primary outcome was death. RESULTS: Among the 104 patients, we observed decreased median GF percentage (35 %; IQ 23-51.5), low iron concentration (7.5 µmol/L; IQ 4-14), normal but low transferrin saturation (TSAT; 21%; IQ 11-33) and increased median hepcidin concentration (58.7 ng/mL; IQ 20.1-92.1). IL-6, ferritin, and GF were independently and significantly associated with death (p = 0.026, p = 0.023, and p = 0.009, respectively). Surprisingly, we observed a decorrelation between hepcidin and IL-6 concentrations in some patients. These findings were amplified in tocilizumab-treated patients. CONCLUSION: Iron metabolism is profoundly modified in COVID-19. The pattern we observed presents differences with a typical inflammation profile. We observed uncoupled IL-6/hepcidin levels in some patients. The benefit of additive iron chelation therapy should be questionable in this setting.


Subject(s)
COVID-19 , Hepcidins , Humans , Hepcidins/metabolism , Cohort Studies , Interleukin-6 , Iron , Ferritins , Transferrin/metabolism
6.
Biochem Med (Zagreb) ; 33(1): 010801, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36627980

ABSTRACT

Herein, we report the case of a 42-year-old woman, hospitalized in a French tertiary hospital for a relapse of a chronic enteropathy, who was found on admission to have no detectable serum transferrin. Surprisingly, she only exhibited mild anaemia. This atransferrinemia persisted for two months throughout her hospitalization, during which her haemoglobin concentration remained broadly stable. Based on her clinical history and evolution, we concluded to an acquired atransferrinemia secondary to chronic undernutrition, inflammation and liver failure. We discuss the investigations performed in this patient, and hypotheses regarding the relative stability of her haemoglobin concentration despite the absence of detectable transferrin.


Subject(s)
Metal Metabolism, Inborn Errors , Transferrin , Humans , Female , Adult , Iron , Hemoglobins
7.
Nutrients ; 14(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956390

ABSTRACT

Iron deficiency is a significant comorbidity of heart failure (HF), defined as the inability of the myocardium to provide sufficient blood flow. However, iron deficiency remains insufficiently detected. Iron-deficiency anemia, defined as a decrease in hemoglobin caused by iron deficiency, is a late consequence of iron deficiency, and the symptoms of iron deficiency, which are not specific, are often confused with those of HF or comorbidities. HF patients with iron deficiency are often rehospitalized and present reduced survival. The correction of iron deficiency in HF patients is associated with improved functional capacity, quality of life, and rehospitalization rates. Because of the inflammation associated with chronic HF, which complicates the picture of nutritional deficiency, only the parenteral route can bypass the tissue sequestration of iron and the inhibition of intestinal iron absorption. Given the negative impact of iron deficiency on HF progression, the frequency and financial implications of rehospitalizations due to decompensation episodes, and the efficacy of this supplementation, screening for this frequent comorbidity should be part of routine testing in all HF patients. Indeed, recent European guidelines recommend screening for iron deficiency (serum ferritin and transferrin saturation coefficient) in all patients with suspected HF, regular iron parameters assessment in all patients with HF, and intravenous iron supplementation in symptomatic patients with proven deficiency. We thus aim to summarize all currently available data regarding this common and easily improvable comorbidity.


Subject(s)
Anemia, Iron-Deficiency , Heart Failure , Iron Deficiencies , Anemia, Iron-Deficiency/diagnosis , Anemia, Iron-Deficiency/epidemiology , Anemia, Iron-Deficiency/etiology , Chronic Disease , Comorbidity , Ferric Compounds , Heart Failure/complications , Heart Failure/diagnosis , Heart Failure/epidemiology , Humans , Iron , Maltose , Quality of Life
8.
Ann Biol Clin (Paris) ; 80(2): 109-118, 2022 03 01.
Article in French | MEDLINE | ID: mdl-35766071

ABSTRACT

The functioning of the heart muscle is particularly sensitive to iron deficiency, the easily curable comorbidity most frequently associated with heart failure. Iron-deficient heart failure patients are more often rehospitalized and have reduced survival. Heart muscle function is particularly susceptible to martial deficiency. Recent randomized studies have shown that exogenous iron intake is accompanied by improved functional capacity (walking test), quality of life, and re-hospitalization rate in these patients. The symptoms of iron deficiency are not very specific and often confused with those of heart failure or other comorbidities, which explains why management is often too late. Anemia is only a late consequence of this iron deficiency. Due to the inflammatory state associated with chronic heart failure, only the parenteral route can bypass the macrophage tissue sequestration of iron and inhibit its intestinal absorption. Recent European guidelines recommend screening for iron deficiency (serum ferritin and transferrin saturation coefficient) in all patients with suspected heart failure, routine iron parameters assessment in all patients with heart failure, and intravenous iron supplementation in case of deficiency in symptomatic patients. Given the pejorative nature of iron deficiency on disease progression, the frequency and financial impact of hospitalizations linked to episodes of decompensation, as well as the effectiveness of simple supplementation, screening for this comorbidity, screening for this frequent comorbidity should now be part of routine testing in all heart failure patients.


Subject(s)
Anemia , Heart Failure , Iron Deficiencies , Comorbidity , Humans
9.
J Intern Med ; 292(4): 542-556, 2022 10.
Article in English | MEDLINE | ID: mdl-35466452

ABSTRACT

Iron deficiency is frequent in patients with chronic inflammatory conditions (e.g., chronic heart failure, chronic kidney disease, cancers, and bowel inflammatory diseases). Indeed, high concentrations of inflammatory cytokines increase hepcidin concentrations that lead to the sequestration of iron in cells of the reticuloendothelial system (functional iron deficiency). Iron parameters are often assessed only in the context of anemia, but iron deficiency, even without anemia, is present in about half of patients with inflammatory conditions. Iron deficiency worsens underlying chronic diseases and is an independent factor of morbidity and mortality. In daily practice, the most effective biomarkers of iron status are serum ferritin, which reflects iron storage, and transferrin saturation, which reflects the transport of iron. Serum ferritin is increased in an inflammatory context, and there is still no consensus on the threshold to be used in chronic inflammatory conditions. Nevertheless, recent recommendations of international guidelines agreed to define iron deficiency by serum ferritin <100 µg/L and/or transferrin saturation <20%. Iron parameters remain, however, insufficiently assessed in patients with chronic inflammatory conditions. Indeed, clinical symptoms of iron deficiency, such as fatigue, are not specific and often confused with those of the primary disease. Iron repletion, preferably by the intravenous route to bypass tissue sequestration, improves clinical signs and quality of life. Because of the negative impact of iron deficiency on chronic inflammatory diseases and the efficacy of intravenous iron repletion, screening of iron parameters should be part of the routine examination of all patients with chronic inflammatory diseases.


Subject(s)
Anemia, Iron-Deficiency , Anemia , Iron Deficiencies , Anemia, Iron-Deficiency/diagnosis , Anemia, Iron-Deficiency/etiology , Biomarkers , Chronic Disease , Cytokines , Ferritins , Hepcidins/therapeutic use , Humans , Iron/therapeutic use , Quality of Life , Transferrins/therapeutic use
10.
Nutrients ; 14(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35268014

ABSTRACT

Iron deficiency (ID) in patients with chronic inflammatory diseases is frequent. However, under-diagnosis is also frequent due to the heterogeneity between guidelines from different medical societies. We applied a common definition for the diagnosis of ID to a large panel of patients with cancer, heart failure (HF), inflammatory bowel disease (IBD), and chronic kidney disease (CKD), where ID was defined as serum ferritin concentration <100 µg/L and/or a transferrin saturation (TSAT) index <20%. Prevalence estimates using this common definition were compared with that obtained with officially accepted definitions (ESMO 2018, ESC 2016, ECCO 2015, and ERBP 2013). For that purpose, we used data collected during the French CARENFER studies, which included 1232, 1733, 1090, and 1245 patients with cancer, HF, IBD, and CKD, respectively. When applying the common definition, ID prevalence increased to 58.1% (vs. 57.9%), 62.8% (49.6%), and 61.2% (23.7%) in cancer, HF, and IBD patients, respectively. Both prevalence estimates were similar (47.1%) in CKD patients. Based on our results, we recommend combining both ferritin concentration and TSAT index to define ID in patients with chronic inflammatory diseases. In those patients, adopting this common definition of ID should contribute to a better screening for ID, whatever the condition.


Subject(s)
Heart Failure , Iron Deficiencies , Renal Insufficiency, Chronic , Ferritins , Humans , Prevalence , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology
12.
Metabolites ; 12(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35208164

ABSTRACT

Iron absorption requires an acidic environment that is generated by the activity of the proton pump gastric H(+)/K(+)ATPase (ATP4), expressed in gastric parietal cells. However, hepcidin, the iron regulatory peptide that inhibits iron absorption, unexpectedly upregulates ATP4 and increases gastric acidity. Thus, a concept of link between acidosis and alterations in iron metabolism, needs to be explored. We investigated this aspect in-vivo using experimental models of NH4Cl-induced acidosis and of an iron-rich diet. Under acidosis, gastric ATP4 was augmented. Serum hepcidin was induced and its mRNA level was increased in the liver but not in the stomach, a tissue where hepcidin is also expressed. mRNA and protein levels of intestinal DMT1(Divalent Metal Transporter 1) and ferroportin were downregulated. Serum iron level and transferrin saturation remained unchanged, but serum ferritin was significantly increased. Under iron-rich diet, the protein expression of ATP4A was increased and serum, hepatic and gastric hepcidin were all induced. Taken together, these results provide evidence of in-vivo relationship between iron metabolism and acidosis. For clinical importance, we speculate that metabolic acidosis may contribute in part to the pathologic elevation of serum hepcidin levels seen in patients with chronic kidney disease. The regulation of ATP4 by iron metabolism may also be of interest for patients with hemochromatosis.

13.
Mol Genet Metab ; 135(3): 206-214, 2022 03.
Article in English | MEDLINE | ID: mdl-35058124

ABSTRACT

BACKGROUND: In patients with acute intermittent porphyria (AIP), induction of delta aminolevulinic acid synthase 1 (ALAS1) leads to haem precursor accumulation that may cause recurring acute attacks. In a recent phase III trial, givosiran significantly reduced the attack rate in severe AIP patients. Frequent adverse events were injection-site reaction, fatigue, nausea, chronic kidney disease and increased alanine aminotransferase. OBJECTIVES: To describe the efficacy and safety of givosiran based on a personalized medical approach. METHODS: We conducted a retrospective patient file study in 25 severe AIP patients treated with givosiran in France. We collected data on clinical and biochemical efficacy along with reports of adverse events. RESULTS: Givosiran drastically reduced the attack rate in our cohort, as 96% were attack-free at the time of the study. The sustained efficacy of givosiran in most patients allowed us to personalize dosing frequency. In 42%, givosiran was only given when haem precursor levels were increasing. Our data suggest that givosiran is most effective when given early in the disease course. We confirmed a high prevalence of adverse events. One patient discontinued treatment due to acute pancreatitis. All patients had hyperhomocysteinemia, and all patients with initial homocysteine levels available showed an increase under treatment. In this context, one patient was diagnosed with pulmonary embolism. CONCLUSION: The sustained effect of givosiran allowed a decrease in dosing frequency without compromising treatment efficacy. The high prevalence of adverse events emphasizes the importance of restricting the treatment to severe AIP and administering the minimum effective dose for each patient.


Subject(s)
Pancreatitis , Porphyria, Acute Intermittent , Acetylgalactosamine/analogs & derivatives , Acute Disease , Heme , Humans , Pancreatitis/drug therapy , Porphyria, Acute Intermittent/drug therapy , Precision Medicine , Pyrrolidines , Retrospective Studies
14.
Blood Adv ; 6(3): 760-766, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34724702

ABSTRACT

The Mendelian inheritance pattern of acute intermittent porphyria, hereditary coproporphyria, and variegate porphyria is autosomal dominant, but the clinical phenotype is heterogeneous. Within the general population, penetrance is low, but among first-degree relatives of a symptomatic proband, penetrance is higher. These observations suggest that genetic factors, in addition to mutation of the specific enzyme of the biosynthetic pathway of heme, contribute to the clinical phenotype. Recent studies by others suggested that the genotype of the transporter protein ABCB6 contribute to the porphyria phenotype. Identifying the molecule(s) that are transported by ABCB6 has been problematic and has led to uncertainty with respect to how or if variants/mutants contribute to phenotypic heterogeneity. Knockout mouse models of Abcb6 have not provided a direction for investigation as homozygous knockout animals do not have a discrete phenotype. To address the proposed link between ABC6 genotype and porphyria phenotype, a large cohort of patients with acute hepatic porphyria and erythropoietic protoporphyria was analyzed. Our studies showed that ABCB6 genotype did not correlate with disease severity. Therefore, genotyping of ABCB6 in patients with acute hepatic porphyria and erythropoietic protoporphyria is not warranted.


Subject(s)
Porphyrias, Hepatic , Porphyrias , Protoporphyria, Erythropoietic , ATP-Binding Cassette Transporters , Animals , Humans , Mice , Mice, Knockout , Porphobilinogen Synthase/deficiency , Porphyrias/genetics , Porphyrias, Hepatic/genetics , Protoporphyria, Erythropoietic/genetics
15.
Eur Radiol ; 32(4): 2481-2491, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34694452

ABSTRACT

OBJECTIVES: To assess the performance of 405 nm-induced autofluorescence for the characterization of primary liver nodules on ex vivo resected specimens. MATERIALS AND METHODS: Forty resected liver specimens bearing 53 primary liver nodules were included in this IRB-approved prospective study. Intratissular spectroscopic measurements were performed using a 25-G fibered-needle on all ex vivo specimens: 5 autofluorescence measurements were performed in both nodules and adjacent parenchyma. The spectra derivatives of the 635 and 670 nm autofluorescence peaks observed in nodules and in adjacent liver parenchyma were compared (Kruskal-Wallis and Mann-Whitney when appropriate). RESULTS: A total of 42 potentially evolutive primary liver nodules-34 hepatocellular carcinomas, 4 intrahepatic cholangiocarcinomas, 4 hepatocellular adenomas-and 11 benign nodules-5 focal nodular hyperplasias, 6 regenerative nodules-were included. Both 635 and 670 nm Δderivatives were significantly higher in benign as compared to potentially evolutive (PEV) nodules (respectively 32.9 ± 4.5 vs 15.3 ± 1.4; p < 0.0001 and 5.7 ± 0.6 vs 2.5 ± 0.1; p < 0.0001) with respective sensitivity and specificity of 78% and 91% for distinguishing PEV from benign nodules. CONCLUSION: 405 nm-induced autofluorescence enables the discrimination of benign from PEV primary liver nodules, suggesting that autofluorescence imaging could be used to optimize US targeted liver biopsies. KEY POINTS: • 405 nm-induced autofluorescence can distinguish liver tumors from the adjacent liver parenchyma. • The analysis of autofluorescence imaging observed within primary liver tumors can discriminate benign tumors from those requiring follow-up or targeted liver biopsy. • In current practice, autofluorescence imaging could be embedded within biopsy needle, to enable, in addition to ultrasound guidance, optimal targeting of liver nodules which could optimize tissue sampling.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Liver Neoplasms , Bile Ducts, Intrahepatic/pathology , Carcinoma, Hepatocellular/pathology , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Neoplasms/pathology , Optical Imaging , Prospective Studies , Sensitivity and Specificity
16.
Metabolites ; 11(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34940556

ABSTRACT

Erythropoietic porphyrias are caused by enzymatic dysfunctions in the heme biosynthetic pathway, resulting in porphyrins accumulation in red blood cells. The porphyrins deposition in tissues, including the skin, leads to photosensitivity that is present in all erythropoietic porphyrias. In the bone marrow, heme synthesis is mainly controlled by intracellular labile iron by post-transcriptional regulation: translation of ALAS2 mRNA, the first and rate-limiting enzyme of the pathway, is inhibited when iron availability is low. Moreover, it has been shown that the expression of ferrochelatase (FECH, an iron-sulfur cluster enzyme that inserts iron into protoporphyrin IX to form heme), is regulated by intracellular iron level. Accordingly, there is accumulating evidence that iron status can mitigate disease expression in patients with erythropoietic porphyrias. This article will review the available clinical data on how iron status can modify the symptoms of erythropoietic porphyrias. We will then review the modulation of heme biosynthesis pathway by iron availability in the erythron and its role in erythropoietic porphyrias physiopathology. Finally, we will summarize what is known of FECH interactions with other proteins involved in iron metabolism in the mitochondria.

17.
Nutrients ; 13(8)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34444676

ABSTRACT

Iron deficiency with or without anemia, needing continuous iron supplementation, is very common in obese patients, particularly those requiring bariatric surgery. The aim of this study was to address the impact of weight loss on the rescue of iron balance in patients who underwent sleeve gastrectomy (SG), a procedure that preserves the duodenum, the main site of iron absorption. The cohort included 88 obese women; sampling of blood and duodenal biopsies of 35 patients were performed before and one year after SG. An analysis of the 35 patients consisted in evaluating iron homeostasis including hepcidin, markers of erythroid iron deficiency (soluble transferrin receptor (sTfR) and erythrocyte protoporphyrin (PPIX)), expression of duodenal iron transporters (DMT1 and ferroportin) and inflammatory markers. After surgery, sTfR and PPIX were decreased. Serum hepcidin levels were increased despite the significant reduction in inflammation. DMT1 abundance was negatively correlated with higher level of serum hepcidin. Ferroportin abundance was not modified. This study shed a new light in effective iron recovery pathways after SG involving suppression of inflammation, improvement of iron absorption, iron supply and efficiency of erythropoiesis, and finally beneficial control of iron homeostasis by hepcidin. Thus, recommendations for iron supplementation of patients after SG should take into account these new parameters of iron status assessment.


Subject(s)
Gastrectomy/adverse effects , Hepcidins/blood , Iron Deficiencies , Adult , Cation Transport Proteins/analysis , Cohort Studies , Dietary Supplements , Duodenum/chemistry , Duodenum/metabolism , Erythrocytes/chemistry , Female , Humans , Intestinal Absorption/physiology , Iron/administration & dosage , Middle Aged , Obesity/blood , Obesity/complications , Obesity/surgery , Prospective Studies , Protoporphyrins/blood , Receptors, Transferrin/blood , Transcription Factors/analysis
18.
J Biol Chem ; 297(2): 100972, 2021 08.
Article in English | MEDLINE | ID: mdl-34280433

ABSTRACT

Heme plays a critical role in catalyzing life-essential redox reactions in all cells, and its synthesis must be tightly balanced with cellular requirements. Heme synthesis in eukaryotes is tightly regulated by the mitochondrial AAA+ unfoldase CLPX (caseinolytic mitochondrial matrix peptidase chaperone subunit X), which promotes heme synthesis by activation of δ-aminolevulinate synthase (ALAS/Hem1) in yeast and regulates turnover of ALAS1 in human cells. However, the specific mechanisms by which CLPX regulates heme synthesis are unclear. In this study, we interrogated the mechanisms by which CLPX regulates heme synthesis in erythroid cells. Quantitation of enzyme activity and protein degradation showed that ALAS2 stability and activity were both increased in the absence of CLPX, suggesting that CLPX primarily regulates ALAS2 by control of its turnover, rather than its activation. However, we also showed that CLPX is required for PPOX (protoporphyrinogen IX oxidase) activity and maintenance of FECH (ferrochelatase) levels, which are the terminal enzymes in heme synthesis, likely accounting for the heme deficiency and porphyrin accumulation observed in Clpx-/- cells. Lastly, CLPX is required for iron utilization for hemoglobin synthesis during erythroid differentiation. Collectively, our data show that the role of CLPX in yeast ALAS/Hem1 activation is not conserved in vertebrates as vertebrates rely on CLPX to regulate ALAS turnover as well as PPOX and FECH activity. Our studies reveal that CLPX mutations may cause anemia and porphyria via dysregulation of ALAS, FECH, and PPOX activities, as well as of iron metabolism.


Subject(s)
5-Aminolevulinate Synthetase/metabolism , Endopeptidase Clp/metabolism , Ferrochelatase/metabolism , Heme/biosynthesis , Iron/metabolism , Leukemia, Erythroblastic, Acute/pathology , Mitochondria/metabolism , Animals , Cell Line, Tumor , Endopeptidase Clp/genetics , Enzyme Activation , Gene Knockout Techniques/methods , Leukemia, Erythroblastic, Acute/enzymology , Leukemia, Erythroblastic, Acute/genetics , Mice , Models, Animal , Proteolysis , Zebrafish
19.
Kidney Int Rep ; 6(7): 1904-1911, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34307985

ABSTRACT

INTRODUCTION: Givosiran is an RNA interference therapeutic designed to block the synthesis of the aminolevulinic acid (ALA) synthase 1 (ALAS1) enzyme in patients with acute intermittent porphyria (AIP). Givosiran may have adverse effects on the kidney. METHODS: We performed a descriptive case series of renal function parameters of all the patients who received givosiran in France. Twenty patients receiving givosiran between March 2018 and July 2020 in France were analyzed: 7 patients in the ENVISION trial and 13 patients treated in collaboration with the Centre de Référence Maladies Rares Prophyries. RESULTS: A transient decrease in renal function was observed in all but 2 patients (90%) within the 3 months following givosiran initiation. None of the patients developed acute kidney injury or disease. Patients of the ENVISION cohort were followed for at least 30 months: 2 patients did not experience estimated glomerular filtration rate (eGFR) loss, 3 patients experienced a modest decline in renal function (-3.4 ml/min per 1.73 m2 per year in average), and 2 patients had a clearly abnormal eGFR loss (-5.8 ml/min per 1.73 m2 per year in average). None of the patients had biochemical signs of active tubular or glomerular injury. One patient's kidney was biopsied without finding any signs of an active kidney disease and with normal ALAS1 tubular expression. CONCLUSIONS: Givosiran is associated with a transient moderate increase in serum creatinine (sCr) without sign of kidney injury. A long-term deleterious impact of ALAS1 inhibition on renal function is not excluded. Because AIP promotes chronic kidney disease, it is difficult to separate the long-term effects of givosiran from the natural progression of the renal disease.

20.
Bioanalysis ; 13(13): 1029-1035, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34100293

ABSTRACT

Aim: To compare methods of quantifying serum hepcidin (based on MS and ELISA) and their ability to diagnose true iron deficiency anemia in critically ill patients. Materials & methods: Serum hepcidin was measured in 119 critically ill patients included in the HEPCIDANE clinical trial, using either an ultra-sensitive ELISA kit (from DRG) or two different MS methods. Results: The results show a good correlation between the different methods studied. The Bland-Altman analysis and the Kappa test for clinical groups show a good or very good agreement between the different tests. Conclusion: ELISA or MS show a satisfactory commutability to quantify serum hepcidin. This is of great importance for the determination of therapeutic strategies in iron deficiency.


Subject(s)
Anemia, Iron-Deficiency/etiology , Enzyme-Linked Immunosorbent Assay/methods , Hepcidins/blood , Mass Spectrometry/methods , Anemia, Iron-Deficiency/blood , Anemia, Iron-Deficiency/diagnosis , Critical Illness , Humans , Protein Isoforms/blood , Reagent Kits, Diagnostic
SELECTION OF CITATIONS
SEARCH DETAIL
...