Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Molecules ; 27(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432042

ABSTRACT

This study of the interaction system of binucleophilic 3-substituted 4-amino-4H-1,2,4-triazole-5-thiols and 3-phenyl-2-propynal made it possible to develop a new approach to synthesis of such isomeric classes as 7-benzylidene-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine and 8-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazepine. Among the 20 compounds studied in vitro against influenza A/Puerto Rico/8/34 (H1N1) virus, half of them demonstrated selectivity index (SI) of 10 or higher and one of them (4-((3-phenylprop-2-yn-1-yl)amino)-4H-1,2,4-triazole-3-thiol) possessed the highest (SI > 300). Docking results and values showed that the preferred interactant for our ligands was M2 proton channel of the influenza A virus. Protein-ligand interactions modeling showed that the aliphatic moiety of ligands could negatively regulate target activity level.


Subject(s)
Influenza A Virus, H1N1 Subtype , Thiadiazines , Thiadiazines/pharmacology , Antiviral Agents/pharmacology , Triazoles/pharmacology , Ligands
2.
Org Biomol Chem ; 20(22): 4559-4568, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35593098

ABSTRACT

Selective heterocyclization leading to 1,2,3,4-tetrahydrobenzo[h]quinazolines from ortho-ketimines of 1,8-bis(dimethylamino)naphthalene (DmanIms) under acid catalysis has been revealed. In contrast to the rather unreactive N,N-dimethylaniline ortho-ketimine, DmanIms readily undergo this transformation without an additional catalyst. This distinction in the reactivity underscores the importance of the second peri-NMe2 group in DmanIms, which facilitates a [1,5]-hydride shift and the subsequent cyclization. The cascade of peri-interactions emerging between 1-NMe2 and 8-NMe2 groups has been identified as a reason for the catalytic effect: (1) the hydrogen bond in the DmanIm dication constrains 1-NMe2 in the desired position providing proximity of reaction centers, (2) the repulsion of the lone pairs of 8-NMe2 group and unrelaxed 1-NMe2 group arising right after deprotonation process reduces the Gibbs free energy of activation (ΔG‡) for the straight hydride shift, and (3) the electrostatic interaction between 8-NMe2 and the charged NCH2+ group in the intermediate increases the ΔG‡ for the reverse hydride shift.

3.
J Org Chem ; 87(9): 6459-6470, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35420424

ABSTRACT

The synthesis of 5-aryl- and 4-aryl/hetaryl/cyclopropyl/alkynyl-5-aryl-1H-pyrrole-2,3-diones by formal isomerization of isoxazole-5-carbaldehydes mediated Mo(CO)6 in wet MeCN has been developed. The resulting 1H-pyrrole-2,3-diones are good precursors for substituted 1H-pyrrolo[2,3-b]quinoxalines.


Subject(s)
Molybdenum , Pyrroles , Isoxazoles , Quinoxalines
4.
Phys Chem Chem Phys ; 24(13): 7882-7892, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35302575

ABSTRACT

Triphenylpnictogens were oxidized to access diphenylpnictioginic acids Ph2XOOH (X = P, As, Sb, Bi). It was shown that oxidation with chloramine-T does not lead to the cleavage of a C-pnictogen bond. The preliminary reductive cleavage with sodium in liquid ammonia followed by the oxidation with hydrogen peroxide was successfully utilised for the synthesis of diphenylphosphinic and diphenylarsinic acids. It was shown that in solid state (by means of XRD), all diphenylpnictoginic acids form polymeric chains. Diphenylbismuthinic and diphenylantimonic acids form polymeric covalent adducts, while diphenylphosphinic and diphenylarsinic chains are associated through hydrogen bonding. Unlike diphenylphosphinic acid, diphenilarsinic acid forms two polymorphs of hydrogen-bonded infinite chains. In solution in a polar aprotic solvent diphenylarsinic acid, similarly to dimethylarsinic, forms hydrogen-bonded cyclic dimers together with a small amount of cyclic trimers.


Subject(s)
Hydrogen , Polymers , Hydrogen Bonding , Solvents
5.
J Comput Chem ; 42(28): 2014-2023, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34415084

ABSTRACT

This work is devoted to investigations of the influence of O-H···Se(-) hydrogen bonds on the electronic shells of selenolate R-Se(-) fragment (R═CH3 ). The geometric, energetic and nuclear magnetic resonance (NMR) spectral parameters for various conformers of CH3 Se(-)⋯(H2 O)n clusters with n = 0-6 were calculated at CCSD/aug-cc-pVDZ level of theory. For selenolate anion CH3 Se(-) solvation free energy was calculated, and for water media it is equal to -71.41 kcal/mol. For O-H···Se(-) hydrogen bonds the proportionality coefficients between QTAIM parameters at (3; -1) bond critical point and the strength of an individual hydrogen bond ∆E were proposed. It was shown, that despite a relative weakness of O-H···Se(-) hydrogen bonds, the outer electronic shell of the selenium atom changes significantly upon formation of each hydrogen bond. This, in turn, cause the dramatic change of NMR parameters of selenium nuclei.

SELECTION OF CITATIONS
SEARCH DETAIL
...