Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(19): 9570-9575, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38669098

ABSTRACT

Light-trapping devices have always been a topic of intense interest among researchers. One such device that has gained attention is the hot-electron photodetector with a tunable detection wavelength. Photodetectors based on plasmon nanostructures that provide excitation of surface plasmon polaritons are challenging to manufacture. To address this issue, a planar hot-electron photodetector based on a Tamm plasmon polariton localized in a metal-semiconductor-multilayer mirror structure has been proposed in this study. The parameters and materials of the structure were adjusted to ensure perfect absorption at the resonance wavelength. As a result, the photoresponsivity of the proposed device can reach 42.6 mA W-1 at 905 nm. For the first time, the photosensitivity was calculated analytically by solving the dispersion law for the Tamm plasmon polariton.

2.
Appl Opt ; 61(17): 5049-5054, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-36256182

ABSTRACT

The influence of the volume fraction of plasmonic nanoparticles on the efficiency of the Tamm-plasmon-polariton-based organic solar cell is investigated in the framework of temporal coupled mode theory and confirmed by the transfer matrix method. It is shown that, unlike a conventional plasmonic solar cell, in which the efficiency is directly proportional to the volume fraction of nanoparticles in the photosensitive layer, the efficiency of the proposed solar cell reaches the highest value at low volume fractions. This effect is explained by the fact that at these volume fractions, the critical coupling condition of the incident field with the Tamm plasmon polariton is fulfilled. Thus, for the incoming radiation range of 350 to 500 nm, a maximal cell efficiency of 28% is achieved with a volume fraction of nanoparticles equal to 10%. Additionally, the optical properties of the photosensitive layer are compared for the cases of determining its complex refractive index by effective medium theory and the S-parameter retrieval method. A good agreement between the results is demonstrated, which encourages the use of the effective medium theory for preliminary calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...