Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(11): 7121-7133, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35262111

ABSTRACT

In this work we evaluate the possibility of using the NMR and IR spectral properties of the PO group to estimate the geometry and strength of hydrogen bonds which it forms with OH-, NH- and CH-acids. The results of the DFT study of 70 hydrogen-bonded 1 : 1 complexes of a model trimethylphosphine oxide, Me3PO, with various proton donors in the gas phase and in aprotic medium (modelled as a polarizable continuum) are presented. Four types of hydrogen bonds with the general formula Me3PO⋯H-A were considered, where the A atom is O, C, and N (neutral or cationic acids). Within the selected set of complexes the hydrogen bond energy varies over a wide range (ca. 0-85 kJ mol-1). We show that it is possible to use simple correlations to estimate the energy and geometry of OHO, NHO and CHO hydrogen bonds from the changes of isotropic 31P NMR chemical shifts and harmonic PO stretching vibration frequencies upon complexation. Such correlations also could be used to estimate the proton-donating ability (and Brønsted acidity; pKa) of OH acids.

2.
J Phys Chem A ; 120(17): 2737-48, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27070193

ABSTRACT

Three bis(6-amino-1,3-dimethyluracil-5-yl)-methane derivatives were studied experimentally by variable-temperature (1)H NMR in polar aprotic solutions (CD2Cl2, C5D5N, C2D2Cl4) and computationally by DFT. The unusual for diarylmethanes coplanar conformation of dimethyluracil rings of each molecule is held by a pair of unequal intramolecular N-H···O hydrogen bonds. We show the presence of two dynamic processes involving breakage/formation of these bonds. First, it is two independent NH2 group rotations, each coupled to nitrogen inversion. Second, it is uracil ring rotations (ring flips). The thermodynamic parameters (ΔH(‡), ΔS(‡), and ΔG(‡)) of both processes were estimated by the full line shape analysis of NMR signals and also by DFT calculations. We demonstrate that, though the ring flips exchange pairs of NH protons, the two processes are not coupled: during the ring flip NH2 groups do not rotate, and during the NH2 rotation the rings do not necessarily rotate. Unlike in many other diarylmethanes, the ring flips in the studied compounds are happening stepwise; i.e., the configuration when both rings are "in flight" at the same time is energetically unfavorable (small degree of "cog wheel effect"). The signs of the ΔS(‡) values indicate that the molecular flexibility increases during the NH2 rotations, but decreases during the ring flips.

SELECTION OF CITATIONS
SEARCH DETAIL
...