Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Breast Cancer Res ; 20(1): 57, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29903038

ABSTRACT

After the publication of this work [1] an error was noticed in Fig. 3a and Fig. 5a.

2.
Cancer Biol Ther ; 12(12): 1050-8, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22157149

ABSTRACT

Indoleamine 2,3-dioxygenase (IDO) modifies adaptive immunity, in part by determining the character of inflammatory responses in the tissue microenvironment. Small molecule inhibitors of IDO are being developed to treat cancer, chronic infections and other diseases, so the systemic effects of IDO disruption on inflammatory phenomena may influence the design and conduct of early phase clinical investigations of this new class of therapeutic agents. Here, we report cardiac and gastrointestinal phenotypes observed in IDO deficient mice that warrant consideration in planned assessments of the safety risks involved in clinical development of IDO inhibitors. Calcification of the cardiac endometrium proximal to the right ventricle was a sexually dimorphic strain-specific phenotype with ~30% penetrance in BALB/c mice lacking IDO. Administration of complete Freund's adjuvant containing Toll-like receptor ligands known to induce IDO caused acute pancreatitis in IDO deficient mice, with implications for the design of planned combination studies of IDO inhibitors with cancer vaccines. In an established model of hyperlipidemia, IDO deficiency caused a dramatic elevation in levels of serum triglycerides. In the large intestine, IDO loss only slightly increased sensitivity to induction of acute colitis, but it markedly elevated tumor incidence, multiplicity and staging during inflammatory colon carcinogenesis. Together, our findings suggest potential cardiac and gastrointestinal risks of IDO inhibitors that should be monitored in patients as this new class of drugs enter early clinical development.


Subject(s)
Gastrointestinal Diseases/enzymology , Heart Diseases/enzymology , Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency , Animals , Calcium/metabolism , Cell Transformation, Neoplastic/metabolism , Cholesterol/blood , Colonic Neoplasms/enzymology , Colonic Neoplasms/genetics , Endometrium/metabolism , Female , Freund's Adjuvant/adverse effects , Freund's Adjuvant/pharmacology , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology , Heart Diseases/metabolism , Heart Diseases/pathology , Hyperlipidemias/blood , Hyperlipidemias/enzymology , Hyperlipidemias/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/enzymology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Pancreatitis/chemically induced , Pancreatitis/enzymology , Pancreatitis/genetics , Sex Characteristics
3.
Eur J Cancer ; 46(9): 1537-53, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20303261

ABSTRACT

PURPOSE: Tamoxifen, a selective oestrogen receptor modulator (SERM), and brivanib alaninate, a vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitor, are two target specific agents that result in a substantial decrease in tumour growth when given alone. Tamoxifen activates SERM stimulated breast and endometrial tumour growth. Tamoxifen and brivanib alaninate have side-effects that can affect therapeutic outcomes. The primary goal of the current study was to evaluate the therapeutic effects of lower doses of both agents when given in combination to mice with SERM sensitive, oestrogen stimulated tumour xenografts (MCF-7 E2 tumours). Experiments were conducted to evaluate the response of SERM stimulated breast (MCF-7 Tam, MCF-7 Ral) and endometrial tumours (EnCa 101) to demonstrate the activity of brivanib alaninate in SERM resistant models. EXPERIMENTAL DESIGN: In the current study, tumour xenografts were minced and bi-transplanted into the mammary fat pads of athymic, ovariectomised mice. Preliminary experiments were conducted to determine an effective oral dose of tamoxifen and brivanib alaninate that had minimal effect on tumour growth. Doses of 125 microg of tamoxifen and 0.05 mg/g of brivanib alaninate were evaluated. An experiment was designed to evaluate the effect of the two agents together when started at the time of tumour implantation. An additional experiment was done in which tumours were already established and then treated, to obtain enough tumour tissue for molecular analysis. RESULTS: Brivanib alaninate was effective at inhibiting tumour growth in SERM sensitive (MCF-7 E2) and SERM stimulated (EnCa 101, MCF-7 Ral, MCF-7 Tam) models. The effect of the low dose drug combination as an anti-tumour strategy for SERM sensitive (MCF-7 E2) in early treatment was as effective as higher doses of either drug used alone. In established tumours, the combination is successful at decreasing tumour growth, while neither agent alone is effective. Molecular analysis revealed a decreased phosphorylation of VEGFR-2 in tumours that were treated with brivanib alaninate and an increase in VEGFA transcription to compensate for the blockade of VEGFR-2 by increasing the transcription of VEGFA. Tamoxifen increases the phosphorylation of VEGFR-2 and this effect is abrogated by brivanib alaninate. There was also increased necrosis in tumours treated with brivanib alaninate. CONCLUSION: Historically, tamoxifen has a role in blocking angiogenesis as well as the blockade of the ER. Tamoxifen and a low dose of an angiogenesis inhibitor, brivanib alaninate, can potentially be combined not only to maximise therapeutic efficacy but also to retard SERM resistant tumour growth.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Breast Neoplasms/drug therapy , Alanine/analogs & derivatives , Animals , Dose-Response Relationship, Drug , Female , Humans , Immunohistochemistry , Mice , Mice, Nude , Neoplasm Transplantation , Pyrroles/administration & dosage , Random Allocation , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Reverse Transcriptase Polymerase Chain Reaction , Tamoxifen/administration & dosage , Transplantation, Heterologous , Triazines/administration & dosage , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Breast Cancer Res ; 10(6): R104, 2008.
Article in English | MEDLINE | ID: mdl-19061505

ABSTRACT

INTRODUCTION: Estrogen deprivation using aromatase inhibitors is one of the standard treatments for postmenopausal women with estrogen receptor (ER)-positive breast cancer. However, one of the consequences of prolonged estrogen suppression is acquired drug resistance. Our group is interested in studying antihormone resistance and has previously reported the development of an estrogen deprived human breast cancer cell line, MCF-7:5C, which undergoes apoptosis in the presence of estradiol. In contrast, another estrogen deprived cell line, MCF-7:2A, appears to have elevated levels of glutathione (GSH) and is resistant to estradiol-induced apoptosis. In the present study, we evaluated whether buthionine sulfoximine (BSO), a potent inhibitor of glutathione (GSH) synthesis, is capable of sensitizing antihormone resistant MCF-7:2A cells to estradiol-induced apoptosis. METHODS: Estrogen deprived MCF-7:2A cells were treated with 1 nM 17beta-estradiol (E2), 100 microM BSO, or 1 nM E2 + 100 microM BSO combination in vitro, and the effects of these agents on cell growth and apoptosis were evaluated by DNA quantitation assay and annexin V and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. The in vitro results of the MCF-7:2A cell line were further confirmed in vivo in a mouse xenograft model. RESULTS: Exposure of MCF-7:2A cells to 1 nM E2 plus 100 microM BSO combination for 48 to 96 h produced a sevenfold increase in apoptosis whereas the individual treatments had no significant effect on growth. Induction of apoptosis by the combination treatment of E2 plus BSO was evidenced by changes in Bcl-2 and Bax expression. The combination treatment also markedly increased phosphorylated c-Jun N-terminal kinase (JNK) levels in MCF-7:2A cells and blockade of the JNK pathway attenuated the apoptotic effect of E2 plus BSO. Our in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of BSO either as a single agent or in combination with E2 significantly reduced tumor growth of MCF-7:2A cells. CONCLUSIONS: Our data indicates that GSH participates in retarding apoptosis in antihormone-resistant human breast cancer cells and that depletion of this molecule by BSO may be critical in predisposing resistant cells to E2-induced apoptotic cell death. We suggest that these data may form the basis of improving therapeutic strategies for the treatment of antihormone resistant ER-positive breast cancer.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Buthionine Sulfoximine/pharmacology , Drug Resistance, Neoplasm , Estrogens/pharmacology , Animals , Annexin A5/metabolism , Blotting, Western , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Cytochromes c/metabolism , Drug Synergism , Estradiol/pharmacology , Estrogens/deficiency , Female , Forkhead Transcription Factors/physiology , Glutathione/metabolism , Humans , Immunoenzyme Techniques , In Situ Nick-End Labeling , JNK Mitogen-Activated Protein Kinases/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Nude , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , bcl-2-Associated X Protein/metabolism
5.
Mol Cancer Ther ; 6(11): 2817-27, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17989318

ABSTRACT

Aromatase inhibitors (AI) are being evaluated as long-term adjuvant therapies and chemopreventives in breast cancer. However, there are concerns about bone mineral density loss in an estrogen-free environment. Unlike nonsteroidal AIs, the steroidal AI exemestane may exert beneficial effects on bone through its primary metabolite 17-hydroexemestane. We investigated 17-hydroexemestane and observed it bound estrogen receptor alpha (ERalpha) very weakly and androgen receptor (AR) strongly. Next, we evaluated 17-hydroexemestane in MCF-7 and T47D breast cancer cells and attributed dependency of its effects on ER or AR using the antiestrogen fulvestrant or the antiandrogen bicalutamide. 17-Hydroexemestane induced proliferation, stimulated cell cycle progression and regulated transcription at high sub-micromolar and micromolar concentrations through ER in both cell lines, but through AR at low nanomolar concentrations selectively in T47D cells. Responses of each cell type to high and low concentrations of the non-aromatizable synthetic androgen R1881 paralleled those of 17-hydroexemestane. 17-Hydroexemestane down-regulated ERalpha protein levels at high concentrations in a cell type-specific manner similarly as 17beta-estradiol, and increased AR protein accumulation at low concentrations in both cell types similarly as R1881. Computer docking indicated that the 17beta-OH group of 17-hydroexemestane relative to the 17-keto group of exemestane contributed significantly more intermolecular interaction energy toward binding AR than ERalpha. Molecular modeling also indicated that 17-hydroexemestane interacted with ERalpha and AR through selective recognition motifs employed by 17beta-estradiol and R1881, respectively. We conclude that 17-hydroexemestane exerts biological effects as an androgen. These results may have important implications for long-term maintenance of patients with AIs.


Subject(s)
Androgens/pharmacology , Androstadienes/metabolism , Androstadienes/pharmacology , Antineoplastic Agents/pharmacology , Androgens/chemistry , Androstadienes/chemistry , Binding, Competitive/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Humans , Hydroxylation/drug effects , Metribolone/pharmacology , Models, Molecular , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Transcription, Genetic/drug effects
6.
J Steroid Biochem Mol Biol ; 102(1-5): 128-38, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17085047

ABSTRACT

We seek to evaluate the clinical consequences of resistance to antihormonal therapy by studying analogous animal xenograft models. Two approaches were taken: (1) MCF-7 tumors were serially transplanted into selective estrogen receptor modulator (SERM)-treated immunocompromised mice to mimic 5 years of SERM treatment. The studies in vivo were designed to replicate the development of acquired resistance to SERMs over years of clinical exposure. (2) MCF-7 cells were cultured long-term under SERM-treated or estrogen withdrawn conditions (to mimic aromatase inhibitors), and then injected into mice to generate endocrine-resistant xenografts. These tumor models have allowed us to define Phase I and Phase II antihormonal resistance according to their responses to E(2) and fulvestrant. Phase I SERM-resistant tumors were growth stimulated in response to estradiol (E(2)), but paradoxically, Phase II SERM and estrogen withdrawn-resistant tumors were growth inhibited by E(2). Fulvestrant did not support growth of Phases I and II SERM-resistant tumors, but did allow growth of Phase II estrogen withdrawn-resistant tumors. Importantly, fulvestrant plus E(2) in Phase II antihormone-resistant tumors reversed the E(2)-induced inhibition and instead resulted in growth stimulation. These data have important clinical implications. Based on these and prior laboratory findings, we propose a clinical strategy for optimal third-line therapy: patients who have responded to and then failed at least two antihormonal treatments may respond favorably to short-term low-dose estrogen due to E(2)-induced apoptosis, followed by treatment with fulvestrant plus an aromatase inhibitor to maintain low tumor burden and avoid a negative interaction between physiologic E(2) and fulvestrant.


Subject(s)
Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Estradiol/analogs & derivatives , Estradiol/therapeutic use , Neoplasms, Hormone-Dependent/drug therapy , Selective Estrogen Receptor Modulators/therapeutic use , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Disease Models, Animal , Fulvestrant , Humans , Mice , Mice, Inbred BALB C , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...