Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37333342

ABSTRACT

Biomolecular condensates are membraneless organelles formed via phase separation of macromolecules, typically consisting of bond-forming "stickers" connected by flexible "linkers". Linkers have diverse roles, such as occupying space and facilitating interactions. To understand how linker length relative to other lengths affects condensation, we focus on the pyrenoid, which enhances photosynthesis in green algae. Specifically, we apply coarse-grained simulations and analytical theory to the pyrenoid proteins of Chlamydomonas reinhardtii: the rigid holoenzyme Rubisco and its flexible partner EPYC1. Remarkably, halving EPYC1 linker lengths decreases critical concentrations by ten-fold. We attribute this difference to the molecular "fit" between EPYC1 and Rubisco. Varying Rubisco sticker locations reveals that the native sites yield the poorest fit, thus optimizing phase separation. Surprisingly, shorter linkers mediate a transition to a gas of rods as Rubisco stickers approach the poles. These findings illustrate how intrinsically disordered proteins affect phase separation through the interplay of molecular length scales.

2.
Proc Natl Acad Sci U S A ; 120(23): e2220014120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252985

ABSTRACT

It has recently become appreciated that cells self-organize their interiors through the formation of biomolecular condensates. These condensates, typically formed through liquid-liquid phase separation of proteins, nucleic acids, and other biopolymers, exhibit reversible assembly/disassembly in response to changing conditions. Condensates play many functional roles, aiding in biochemical reactions, signal transduction, and sequestration of certain components. Ultimately, these functions depend on the physical properties of condensates, which are encoded in the microscopic features of the constituent biomolecules. In general, the mapping from microscopic features to macroscopic properties is complex, but it is known that near a critical point, macroscopic properties follow power laws with only a small number of parameters, making it easier to identify underlying principles. How far does this critical region extend for biomolecular condensates and what principles govern condensate properties in the critical regime? Using coarse-grained molecular-dynamics simulations of a representative class of biomolecular condensates, we found that the critical regime can be wide enough to cover the full physiological range of temperatures. Within this critical regime, we identified that polymer sequence influences surface tension predominately via shifting the critical temperature. Finally, we show that condensate surface tension over a wide range of temperatures can be calculated from the critical temperature and a single measurement of the interface width.


Subject(s)
Biomolecular Condensates , Nucleic Acids , Proteins/metabolism , Nucleic Acids/metabolism , Organelles/metabolism , Surface Properties
3.
iScience ; 25(2): 103852, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35198903

ABSTRACT

Cells can achieve internal organization by exploiting liquid-liquid phase separation to form biomolecular condensates. Here we focus on the surface properties of condensates composed of two multivalent associative polymers held together by one-to-one "sticker" bonds. Using coarse-grained molecular-dynamics simulations, we study the influence of component stoichiometry on condensate surface properties. We find that unequal stoichiometry results in enrichment of the majority species at the interface and a sharp reduction of surface tension. To relate these two effects, we show that the reduction in surface tension scales linearly with the excess concentration of free binding sites at the interface. Our results imply that each excess free site contributes an approximately fixed additional energy and entropy to the interface, with the latter dominating such that enrichment of free majority sites lowers the surface tension. Our work provides insight into novel physical mechanisms by which cells can regulate condensate surface properties.

4.
PLoS Comput Biol ; 17(12): e1009748, 2021 12.
Article in English | MEDLINE | ID: mdl-34965250

ABSTRACT

Eukaryotic cells partition a wide variety of important materials and processes into biomolecular condensates-phase-separated droplets that lack a membrane. In addition to nonspecific electrostatic or hydrophobic interactions, phase separation also depends on specific binding motifs that link together constituent molecules. Nevertheless, few rules have been established for how these ubiquitous specific, saturating, motif-motif interactions drive phase separation. By integrating Monte Carlo simulations of lattice-polymers with mean-field theory, we show that the sequence of heterotypic binding motifs strongly affects a polymer's ability to phase separate, influencing both phase boundaries and condensate properties (e.g. viscosity and polymer diffusion). We find that sequences with large blocks of single motifs typically form more inter-polymer bonds, which promotes phase separation. Notably, the sequence of binding motifs influences phase separation primarily by determining the conformational entropy of self-bonding by single polymers. This contrasts with systems where the molecular architecture primarily affects the energy of the dense phase, providing a new entropy-based mechanism for the biological control of phase separation.


Subject(s)
Biophysical Phenomena/physiology , Eukaryotic Cells/physiology , Molecular Conformation , Polymers , Animals , Computational Biology , Entropy , Hydrophobic and Hydrophilic Interactions , Intracellular Space/metabolism , Models, Biological , Monte Carlo Method , Polymers/chemistry , Polymers/metabolism , Protein Binding/physiology , Viscosity
5.
Phys Chem Chem Phys ; 21(44): 24527-24534, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31663550

ABSTRACT

Folding is generally assumed to be a Markov process, without memory. When the molecular motion is coupled to that of a probe as in single-molecule force spectroscopy (SMFS) experiments, however, theory predicts that the coupling to a second Markov process should induce memory when monitoring a projection of the full multi-dimensional motion onto a reduced coordinate. We developed a method to evaluate the time constant of the induced memory from its effects on the autocorrelation function, which can be readily determined from experimental data. Applying this method to both simulated SMFS measurements and experimental trajectories of DNA hairpin folding measured by optical tweezers as a model system, we validated the prediction that the linker induces memory. For these measurements, the timescale of the induced memory was found to be similar to the time required for the force probe to respond to changes in the molecule, and in the regime where the experimentally observed dynamics were not significantly perturbed by probe-molecule coupling artifacts. Memory effects are thus a general feature of SMFS measurements induced by the mechanical connection between the molecule and force probe that should be considered when interpreting experimental data.


Subject(s)
DNA/chemistry , Single Molecule Imaging , DNA/metabolism , Inverted Repeat Sequences , Kinetics , Markov Chains , Nucleic Acid Conformation , Optical Tweezers
6.
Proc Natl Acad Sci U S A ; 116(17): 8125-8130, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30952784

ABSTRACT

Transition paths represent the parts of a reaction where the energy barrier separating products and reactants is crossed. They are essential to understanding reaction mechanisms, yet many of their properties remain unstudied. Here, we report measurements of the average shape of transition paths, studying the folding of DNA hairpins as a model system for folding reactions. Individual transition paths were detected in the folding trajectories of hairpins with different sequences held under tension in optical tweezers, and path shapes were computed by averaging all transitions in the time domain, 〈t(x)〉, or by averaging transitions of a given duration in the extension domain, 〈x(t|τ)〉 τ Whereas 〈t(x)〉 was close to straight, with only a subtle curvature, 〈x(t|τ)〉 τ had more pronounced curvature that fit well to theoretical expectations for the dominant transition path, returning diffusion coefficients similar to values obtained previously from independent methods. Simulations suggested that 〈t(x)〉 provided a less reliable representation of the path shape than 〈x(t|τ)〉 τ , because it was far more sensitive to the effects of coupling the molecule to the experimental force probe. Intriguingly, the path shape variance was larger for some hairpins than others, indicating sequence-dependent changes in the diversity of transition paths reflective of differences in the character of the energy barriers, such as the width of the barrier saddle-point or the presence of parallel paths through multiple barriers between the folded and unfolded states. These studies of average path shapes point the way forward for probing the rich information contained in path shape fluctuations.


Subject(s)
DNA/chemistry , Inverted Repeat Sequences , Nucleic Acid Conformation , Optical Tweezers , Thermodynamics
7.
J Chem Phys ; 149(11): 115101, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30243275

ABSTRACT

Transition paths are of great interest because they encapsulate information about the mechanisms of barrier-crossing reactions. Analysis of experiments measuring biomolecular folding reactions has relied on expressions for properties of transition paths such as transition-path times and velocities that hold in the limit of large harmonic barriers, but real molecules often have relatively small barriers. Recent theoretical work presented more general expressions for transition-path properties. Here we extend this work, deriving expressions from the general case that can be applied to small harmonic barriers. We first compared the performance of small-barrier, large-barrier, and general solutions when applied to simulated transitions, focusing on improvements in estimates of the diffusion coefficient determined from transition times and velocities. We then applied these expressions to experimental data from force spectroscopy measurements of DNA hairpins. We found that the low-barrier approximation and exact solution reduced or resolved the small but systematic inconsistencies that had arisen from assuming large harmonic barriers, demonstrating the practical utility of the new equations for analyzing experimental data.


Subject(s)
Chemistry Techniques, Analytical/methods , DNA , DNA/chemistry , G-Quadruplexes , Inverted Repeat Sequences
8.
Biophys J ; 114(7): 1657-1666, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29642035

ABSTRACT

Folding of proteins and nucleic acids involves a diffusive search over a multidimensional conformational energy landscape for the minimal-energy structure. When examining the projection of conformational motions onto a one-dimensional reaction coordinate, as done in most experiments, the diffusion coefficient D is generally position dependent. However, it has proven challenging to measure such position-dependence experimentally. We investigated the position-dependence of D in the folding of DNA hairpins as a simple model system in two ways: first, by analyzing the round-trip time to return to a given extension in constant-force extension trajectories measured by force spectroscopy, and second, by analyzing the fall time required to reach a given extension in force jump measurements. These methods yielded conflicting results: the fall time implied a fairly constant D, but the round-trip time implied variations of over an order of magnitude. Comparison of experiments with computational simulations revealed that both methods were strongly affected by experimental artifacts inherent to force spectroscopy measurements, which obscured the intrinsic position-dependence of D. Lastly, we applied Kramers's theory to the kinetics of hairpins with energy barriers located at different positions along the hairpin stem, as a crude probe of D at different stem positions, and we found that D did not vary much as the barrier was moved along the reaction coordinate. This work underlines the difficulties faced when trying to deduce position-dependent diffusion coefficients from experimental folding trajectories.


Subject(s)
DNA/chemistry , Single Molecule Imaging , Base Sequence , DNA/genetics , Diffusion , Inverted Repeat Sequences , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...