Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Imaging ; 17: 1536012118794816, 2018.
Article in English | MEDLINE | ID: mdl-30203710

ABSTRACT

The recent success of autologous T cell-based therapies in hematological malignancies has spurred interest in applying similar immunotherapy strategies to the treatment of solid tumors. Identified nearly 4 decades ago, natural killer (NK) cells represent an arguably better cell type for immunotherapy development. Natural killer cells are cytotoxic lymphocytes that mediate the direct killing of transformed cells with reduced or absent major histocompatibility complex (MHC) and are the effector cells in antibody-dependent cell-mediated cytotoxicity. Unlike T cells, they do not require human leukocyte antigen (HLA) matching allowing for the adoptive transfer of allogeneic NK cells in the clinic. The development of NK cell-based therapies for solid tumors is complicated by the presence of an immunosuppressive tumor microenvironment that can potentially disarm NK cells rendering them inactive. The molecular imaging of NK cells in vivo will be crucial for the development of new therapies allowing for the immediate assessment of therapeutic response and off-target effects. A number of groups have investigated methods for detecting NK cells by optical, nuclear, and magnetic resonance imaging. In this review, we will provide an overview of the advances made in imaging NK cells in both preclinical and clinical studies.


Subject(s)
Killer Cells, Natural/cytology , Molecular Imaging , Humans , Intravital Microscopy , Luminescent Measurements , Magnetic Resonance Imaging
2.
PPAR Res ; 20102010.
Article in English | MEDLINE | ID: mdl-20885938

ABSTRACT

The peroxisome proliferator-activated receptor-α (PPARα) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPARα in rodents leads to the development of hepatocellular carcinomas. The ability of PPARα to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this complex. Here, we report the identification and characterization of PPARα-interacting cofactor (PRIC)-295 (PRIC295), a novel coactivator protein, and show that it interacts with the Med1 and Med24 subunits of the Mediator complex. PRIC295 contains 10 LXXLL signature motifs that facilitate nuclear receptor binding and interacts with PPARα and five other members of the nuclear receptor superfamily in a ligand-dependent manner. PRIC295 enhances the transactivation function of PPARα, PPARγ, and ERα. These data demonstrate that PRIC295 interacts with nuclear receptors such as PPARα and functions as a transcription coactivator under in vitro conditions and may play an important role in mediating the effects in vivo as a member of the PRIC complex with Med1 and Med24.

3.
Nucl Recept Signal ; 8: e002, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20414453

ABSTRACT

The peroxisome proliferator-activated receptor alpha (PPARalpha, or NR1C1) is a nuclear hormone receptor activated by a structurally diverse array of synthetic chemicals known as peroxisome proliferators. Endogenous activation of PPARalpha in liver has also been observed in certain gene knockout mouse models of lipid metabolism, implying the existence of enzymes that either generate (synthesize) or degrade endogenous PPARalpha agonists. For example, substrates involved in fatty acid oxidation can function as PPARalpha ligands. PPARalpha serves as a xenobiotic and lipid sensor to regulate energy combustion, hepatic steatosis, lipoprotein synthesis, inflammation and liver cancer. Mainly, PPARalpha modulates the activities of all three fatty acid oxidation systems, namely mitochondrial and peroxisomal beta-oxidation and microsomal omega-oxidation, and thus plays a key role in energy expenditure. Sustained activation of PPARalpha by either exogenous or endogenous agonists leads to the development of hepatocellular carcinoma resulting from sustained oxidative and possibly endoplasmic reticulum stress and liver cell proliferation. PPARalpha requires transcription coactivator PPAR-binding protein (PBP)/mediator subunit 1(MED1) for its transcriptional activity.


Subject(s)
Cell Nucleus/metabolism , Energy Metabolism , Inflammation/metabolism , Lipid Metabolism Disorders/metabolism , Neoplasms/metabolism , PPAR alpha/metabolism , Animals , Humans
4.
J Mol Biol ; 350(5): 938-52, 2005 Jul 29.
Article in English | MEDLINE | ID: mdl-15967465

ABSTRACT

Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein-protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (K(D-DNA)=1.4 nM). Another fusion protein, constructed without the C-terminal protein-protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (K(D-DNA)=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA-protein stability to protein-protein contacts at a remote site may provide a trigger point for DNA-protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase.


Subject(s)
Chromosomes/metabolism , Oxytricha/genetics , Telomere-Binding Proteins/metabolism , Telomere/metabolism , Animals , DNA/metabolism , Multiprotein Complexes , Oxytricha/chemistry , Protein Binding , Protein Subunits , Protozoan Proteins , Recombinant Fusion Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...