Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 193(12): 842, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34821985

ABSTRACT

Deposition of atmospheric pollution as particulate matter (PM) has become a serious issue in many urban areas. This study measured and estimated the amount of atmospheric PM deposition onto oriental plane (Platanus orientalis L.) trees located in Tehran Megapolis, Iran. PM deposited on the leaves of urban trees during spring and summer was estimated using leaf wash measurements. In addition to direct measurements, the dry deposition velocity and the yearly whole-tree PM deposition were estimated using both field measurements and a theoretical model of deposition flux. We estimated air quality improvement as a result of the trees at respiratory height (1.5 m), tree height (10 m), and boundary layer height (1719 m). Foliar PM deposition during spring and summer was estimated to average 0.05 g/leaf and 41.39 g/tree using direct measurements. The annual PM deposited on the leaves, trunk, and branches of an average urban tree was calculated to be 78.60 g/tree. Trees were estimated to improve air quality at 1.5 m, 10 m, and 1719 m from ground level by 25.8%, 5.8%, and 0.1%, respectively. Hence, oriental plane trees substantially reduce PM at respiratory height.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Environmental Monitoring , Iran , Particulate Matter/analysis , Plant Leaves/chemistry , Trees
2.
Sci Total Environ ; 568: 845-855, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27318513

ABSTRACT

As plantations become increasingly important sources of wood and fiber in arid/semiarid places, they have also become increasingly criticized for their hydrological impacts. An examination and comparison of gross rainfall (GR) partitioning across commonly-planted tree species (Pinus eldarica, Cupressus arizonica, Robinia pseudoacacia, and Fraxinus rotundifolia) in semiarid regions has great value for watershed and forest managers interested in managing canopy hydrological processes for societal benefit. Therefore, we performed a field study examining GR partitioning into throughfall (TF), stemflow (SF), and rainfall interception (I) for these species in the semiarid Chitgar Forest Park, Tehran, Iran. An advantage to our study is that we explore the effects of forest structural differences in plantation forests experiencing similar climatic factors and storm conditions. As such, variability in GR partitioning due to different meteorological conditions is minimized, allowing comparison of structural attributes across plantations. Our results show that commonly-selected afforestation species experiencing the same climate produced differing stand structures that differentially partition GR into TF, SF, and I. P. eldarica might be the best of the four species to plant if the primary goal of afforestation is to limit erosion and stormwater runoff as it intercepted more rainfall than other species. However, the high SF generation from F. rotundifolia, and low GR necessary to initiate SF, could maximize retention of water in the soils since SF has been shown to infiltrate along root pathways and access groundwater. A consideration of GR partitioning should be considered when selecting a species for afforestation/reforestation in water-limited ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...