Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Toxicol ; 48: 132-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24859271

ABSTRACT

To assess the potential for male-mediated drug transfer to their female partner and/or developing conceptus, vaginal uptake of a monoclonal antibody (mAb) biotherapeutic was assessed in cynomolgus monkeys. A human IgG2 mAb (IgG2X; bound human and cynomolgus monkey neonatal Fc-receptor, FcRn, with similar high affinity) was administered intravaginally (IvG; 100mg/dose) to 5 pregnant cynomolgus monkeys biweekly from gestation day (gd) 21 to gd133. In all maternal samples collected before gd119, IgG2X plasma concentrations were below the limit of quantification (BLQ; <25ng/mL). After dosing on gd119 and 133, maternal IgG2X plasma concentrations remained BLQ in 3/5 monkeys and were very low in 2/5 (up to 116ng/mL; ∼0.01% of the IvG dose). IgG2X was BLQ in all fetal plasma samples. These data indicate that male-mediated mAb drug transfer via seminal fluid does not present a health risk to the female partner and is not bioavailable to the developing conceptus.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Fetal Blood/metabolism , Immunoglobulin G/administration & dosage , Immunoglobulin G/pharmacology , Administration, Intravaginal , Animals , Antibodies, Monoclonal/blood , Female , Immunoglobulin G/blood , Macaca fascicularis , Male , Maternal Exposure , Maternal-Fetal Exchange , Pregnancy , Semen/metabolism
2.
Bone ; 64: 314-25, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24727159

ABSTRACT

RANKL is a key regulator of bone resorption and osteoclastogenesis. Denosumab is a fully human IgG2 monoclonal antibody that inhibits bone resorption by binding and inhibiting the activity of RANKL. To determine the effects of denosumab on pre- and postnatal skeletal growth and development, subcutaneous injections of 0 (control) or 50 mg/kg/month denosumab were given to pregnant cynomolgus monkeys from approximately gestation day (GD) 20 until parturition (up to 6 doses). For up to 6 months postpartum (birth day [BD] 180/181), evaluation of the infants included skeletal radiographs, bone biomarkers, and oral examinations for assessment of tooth eruption. Infant bones were collected at necropsy for densitometry, biomechanical testing, and histopathologic evaluation from control and denosumab-exposed infants on BD1 (or within 2 weeks of birth) and BD181, and from infants that died or were euthanized moribund from BD5 to BD69. In all denosumab-exposed infants, biomarkers of bone resorption and formation were markedly decreased at BD1 and BD14 and slightly greater at BD91 vs. control, then similar to control values by BD181. Spontaneous long bone fractures were detected clinically or radiographically in 4 denosumab-exposed infants at BD28 and BD60, with evidence of radiographic healing at ≥BD60. In BD1 infants exposed to denosumab in utero, radiographic evaluations of the skeleton revealed decreased long bone length; a generalized increased radio-opacity of the axial and appendicular skeleton and bones at the base of the skull with decreased or absent marrow cavities, widened growth plates, flared/club-shaped metaphysis, altered jaw/skull shape, and reduced jaw length; and delayed development of secondary ossification centers. Densitometric evaluations in these infants demonstrated a marked increase in bone mineral density at trabecular sites, but cortical bone mineral density was decreased. Histologically, long bone cortices were attenuated and there was an absence of osteoclasts. Bones with active endochondral ossification consisted largely of a dense network of retained primary spongiosa with reduced marrow space consistent with an osteopetrotic phenotype. A minimal increase in growth plate thickness largely due to the expansion of the hypertrophic zone was present. Retained woven bone was observed in bones formed by intramembranous ossification, consistent with absence of bone remodeling. These changes in bone tissue composition and geometry were reflected in reduced biomechanical strength and material properties of bones from denosumab-exposed infants. Material property changes were characterized by increased tissue brittleness reflected in reductions in calculated material toughness at the femur diaphysis and lack of correlation between energy and bone mass at the vertebra; these changes were likely the basis for the increased skeletal fragility (fractures). Although tooth eruption was not impaired in denosumab-exposed infants, the reduced growth and increased bone density of the mandible resulted in dental abnormalities consisting of tooth malalignment and dental dysplasia. Radiographic changes at BD1 persisted at BD28, with evidence of resumption of bone resorption and remodeling observed in most infants at BD60 and/or BD90. In 2 infants euthanized on BD60 and BD69, there was histologic and radiographic evidence of subphyseal/metaphyseal bone resorption accompanied by multiple foci of ossification in growth plates that were markedly increased in thickness. In infants necropsied at BD181, where systemic exposure to denosumab had been below limits of quantitation for approximately 3months, there was largely full recovery from all bone-related changes observed earlier postpartum, including tissue brittleness. Persistent changes included dental dysplasia, decreased bone length, reduced cortical thickness, and decreased peak load and ultimate strength at the femur diaphysis. In conclusion, the skeletal and secondary dental effects observed in infant monkeys exposed in utero to denosumab are consistent with the anticipated pharmacological activity of denosumab as a monoclonal antibody against RANKL and inhibitor of osteoclastogenesis. The resulting inhibition of resorption impaired both bone modeling and remodeling during skeletal development and growth. The skeletal phenotype of these infant monkeys resembles human infants with osteoclast-poor osteopetrosis due to inactivating mutations of RANK or RANKL.


Subject(s)
Antibodies, Monoclonal, Humanized/toxicity , Osteoclasts/pathology , Osteopetrosis/pathology , Prenatal Exposure Delayed Effects , Animals , Antibodies, Monoclonal, Humanized/immunology , Bone Remodeling , Denosumab , Female , Macaca fascicularis , Osteopetrosis/diagnostic imaging , Phenotype , Pregnancy , Tomography, X-Ray Computed , Tooth Eruption
3.
Toxicol Pathol ; 42(3): 510-23, 2014.
Article in English | MEDLINE | ID: mdl-23674390

ABSTRACT

We conducted a retrospective analysis of publicly available preclinical toxicology studies with erythropoiesis-stimulating agents (ESAs) to examine common adverse events in rats, Beagle dogs, and cynomolgus monkeys. Mortality and/or thrombotic events were reported sporadically in a subset of studies and attributed to the high hematocrit (HCT) achieved in the animals. However, similarly high HCT was achieved in both high-dose and low-dose groups, but there were no reported adverse events in the low-dose group suggesting HCT was not the sole contributing factor leading to toxicity. Our analysis indicated that increased dose, dose frequency, and dosing duration in addition to high HCT contributed to mortality and thrombosis. To further evaluate this relationship, the incidence of toxicities was compared in rats administered an experimental hyperglycosylated analog of recombinant human erythropoietin (AMG 114) at varying dosing schedules in 1-month toxicity studies. The incidence of mortality and thrombotic events increased in higher dose groups and when dosed more frequently, despite a similarly high HCT in all animals. The results from the investigative study and retrospective analysis demonstrate that ESA-related toxicities in preclinical species are associated with dose level, dose frequency, and dosing duration, and not solely dependent upon a high HCT.


Subject(s)
Hematinics , Hematocrit , Thrombosis/chemically induced , Animals , Biomedical Research , Dogs , Erythropoiesis/drug effects , Erythropoietin/administration & dosage , Erythropoietin/adverse effects , Erythropoietin/toxicity , Heart Valve Diseases , Hematinics/administration & dosage , Hematinics/adverse effects , Hematinics/toxicity , Humans , Macaca fascicularis , Rats , Rats, Sprague-Dawley , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/toxicity , Retrospective Studies , Stomach Neoplasms
4.
Toxicol Pathol ; 42(3): 524-39, 2014.
Article in English | MEDLINE | ID: mdl-23674391

ABSTRACT

We recently reported results that erythropoiesis-stimulating agent (ESA)-related thrombotic toxicities in preclinical species were not solely dependent on a high hematocrit (HCT) but also associated with increased ESA dose level, dose frequency, and dosing duration. In this article, we conclude that sequelae of an increased magnitude of ESA-stimulated erythropoiesis potentially contributed to thrombosis in the highest ESA dose groups. The results were obtained from two investigative studies we conducted in Sprague-Dawley rats administered a low (no thrombotic toxicities) or high (with thrombotic toxicities) dose level of a hyperglycosylated analog of recombinant human erythropoietin (AMG 114), 3 times weekly for up to 9 days or for 1 month. Despite similarly increased HCT at both dose levels, animals in the high-dose group had an increased magnitude of erythropoiesis measured by spleen weights, splenic erythropoiesis, and circulating reticulocytes. Resulting prothrombotic risk factors identified predominantly or uniquely in the high-dose group were higher numbers of immature reticulocytes and nucleated red blood cells in circulation, severe functional iron deficiency, and increased intravascular destruction of iron-deficient reticulocyte/red blood cells. No thrombotic events were detected in rats dosed up to 9 days suggesting a sustained high HCT is a requisite cofactor for development of ESA-related thrombotic toxicities.


Subject(s)
Erythropoiesis/drug effects , Erythropoietin/pharmacology , Erythropoietin/toxicity , Recombinant Proteins/pharmacology , Recombinant Proteins/toxicity , Analysis of Variance , Animals , Blood Platelets , Erythrocytes , Erythropoietin/administration & dosage , Hematocrit , Humans , Iron/blood , Iron/metabolism , Male , Polycythemia , Rats , Rats, Sprague-Dawley , Recombinant Proteins/administration & dosage , Reticulocytes
5.
Toxicol Pathol ; 42(3): 540-54, 2014.
Article in English | MEDLINE | ID: mdl-23674392

ABSTRACT

We previously reported an increased incidence of thrombotic toxicities in Sprague-Dawley rats administered the highest dose level of a hyperglycosylated analog of recombinant human erythropoietin (AMG 114) for 1 month as not solely dependent on high hematocrit (HCT). Thereafter, we identified increased erythropoiesis as a prothrombotic risk factor increased in the AMG 114 high-dose group with thrombotic toxicities, compared to a low-dose group with no toxicities but similar HCT. Here, we identified pleiotropic cytokines as prothrombotic factors associated with AMG 114 dose level. Before a high HCT was achieved, rats in the AMG 114 high, but not the low-dose group, had imbalanced hemostasis (increased von Willebrand factor and prothrombin time, decreased antithrombin III) coexistent with cytokines implicated in thrombosis: monocyte chemotactic protein 1 (MCP-1), MCP-3, tissue inhibitor of metalloproteinases 1, macrophage inhibitory protein-2, oncostatin M, T-cell-specific protein, stem cell factor, vascular endothelial growth factor, and interleukin-11. While no unique pathway to erythropoiesis stimulating agent-related thrombosis was identified, cytokines associated with increased erythropoiesis contributed to a prothrombotic intravascular environment in the AMG 114 high-dose group, but not in lower dose groups with a similar high HCT.


Subject(s)
Cytokines/blood , Cytokines/metabolism , Erythropoiesis/drug effects , Erythropoietin/pharmacology , Recombinant Proteins/pharmacology , Animals , Erythropoietin/chemistry , Hematocrit , Humans , Male , Polycythemia , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Reticulocytes , Thrombosis
6.
Mol Cancer Ther ; 7(3): 590-8, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18347145

ABSTRACT

Both the epidermal growth factor (EGF) and the vascular endothelial growth factor (VEGF) pathways are associated with intestinal cancer, and therapeutic approaches targeting either EGF receptor (EGFR) or VEGF receptor (VEGFR) signaling have recently been approved for patients with advanced colorectal cancer. The Apc(Min/+) mouse is a well-characterized in vivo model of intestinal tumorigenesis, and animals with this genetic mutation develop macroscopically detectable adenomas from approximately 6 weeks of age. Previous work in the Apc(Min/+) mouse has shown that therapeutic approaches targeting either VEGFR or EGFR signaling affect predominantly the size or number of adenomas, respectively. In this study, we have assessed the effect of inhibiting both these key pathways simultaneously using ZD6474 (Vandetanib, ZACTIMA), a selective inhibitor of VEGFR and EGFR tyrosine kinases. To assess the effects of ZD6474 on early- and later-stage disease, treatment was initiated in 6- and 10-week-old Apc(Min/+) mice for 28 days. ZD6474 markedly reduced both the number and the size of polyps when administered at either an early or a later stage of polyp development. This reduction in both adenoma number and size resulted in a total reduction in tumor burden in the small intestine of nearly 75% in both studies (P < 0.01). The current data build on the concept that EGFR-dependent tumor cell proliferation and VEGF/VEGFR2-dependent angiogenesis and survival are distinct key mechanisms in polyp development. Pharmacologic inhibition of both signaling pathways has significant antitumor effects at both early and late stages of polyp development. Therefore, targeting both VEGFR- and EGFR-dependent signaling may be a beneficial strategy in early intestinal cancer.


Subject(s)
Adenoma/pathology , ErbB Receptors/metabolism , Genes, APC , Intestinal Neoplasms/pathology , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction , Adenoma/genetics , Adenoma/metabolism , Animals , Female , Intestinal Neoplasms/genetics , Intestinal Neoplasms/metabolism , Male , Mice , Mice, Inbred C57BL
7.
Toxicol Pathol ; 35(3): 327-36, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17455080

ABSTRACT

Ribonucleic acid (RNA) interference (RNAi) is a recently discovered phenomenon whereby the introduction of double stranded (ds) RNA into the cytoplasm of the cell results in the specific and efficient degradation of complementary messenger (m) RNA and, therefore, reduced protein production. It was discovered by chance during attempts to develop flowers with increased colour intensity. The specific nature of the inhibition of protein production of cells has resulted in an explosion of research to understand and exploit RNAi. The technique is now established in in vitro systems, and much work is focussed in adapting RNAi for in vivo application. The potential of the technology in understanding physiological and pathological processes is significant, while its development as a therapeutic agent holds much promise as targeted agents. This review will describe the basic biological processes that drive RNAi, indicate current areas of areas research, and forecast future areas of development.


Subject(s)
Drug Industry , RNA Interference , Technology/methods , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...