Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Curr Issues Mol Biol ; 45(7): 6140-6153, 2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37504303

ABSTRACT

Recently, a database of human piRNAs (piwi-interacting RNAs) was created, which allows the study of the binding of many piRNAs to the mRNAs of genes involved in many diseases, including cancer. In the present work, we identified the piRNAs that can interact with candidate esophageal squamous cell carcinoma (ESCC) genes. The binding of 480 thousand piRNAs with the mRNAs of 66 candidate ESCC genes was studied. Bioinformatic studies found that piRNAs bind only to the mRNAs of nine candidate genes: AURKA, BMP7, GCOM1, ERCC1, MTHFR, SASH1, SIX4, SULT1A1, and TP53. It has been shown that piRNAs can bind to mRNA by overlapping nucleotide sequences in limited 3'UTR and 5'UTR regions called clusters of binding sites (BSs). The existence of clusters of piRNA BSs significantly reduces the proportion of the nucleotide sequences of these sites in the mRNA of target genes. Competition between piRNAs occurs for binding to the mRNA of target genes. Individual piRNAs and groups of piRNAs that have separate BSs and clusters of BSs in the mRNAs of two or more candidate genes have been identified in the mRNAs of these genes. This organization of piRNAs BSs indicates the interdependence of the expression of candidate genes through piRNAs. Significant differences in the ability of genes to interact with piRNAs prevent the side effects of piRNAs on genes with a lack of the ability to bind such piRNAs. Individual piRNAs and sets of piRNAs are proposed and recommended for the diagnosis and therapy of ESCC.

2.
Curr Issues Mol Biol ; 45(4): 2950-2964, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37185717

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the COVID-19 pandemic, can still infect populations in many countries around the globe. The Omicron strain is the most mutated variant of SARS-CoV-2. The high transmissibility of the strain and its ability to evade immunity necessitate a priority study of its properties in order to quickly create effective means of preventing its spread. The current research aimed to examine the in silico interaction between PIWI-interacting RNAs (piRNAs) and the SARS-CoV-2 genome (gRNA) to identify endogenous piRNAs and propose synthetic piRNAs with strong antiviral activity for drug development. This study used validated bioinformatic approaches regarding the interaction of more than eight million piRNAs with the SARS-CoV-2 genome. The piRNAs' binding sites (BSs) in the 5'UTR were located with overlapping nucleotide sequences termed clusters of BSs. Several BSs clusters have been found in the nsp3, nsp7, RNA-dependent RNA polymerase, endoRNAse, S surface glycoprotein, ORF7a, and nucleocapsid. Sixteen synthetic piRNAs that interact with gRNA have been proposed with free binding energy ranging from -170 kJ/mol to -175 kJ/mol, which can be used to create drugs that suppress the reproduction of SARS-CoV-2.

3.
Int J Mol Sci ; 23(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077317

ABSTRACT

A prolonged pandemic with numerous human casualties requires a rapid search for means to control the various strains of SARS-CoV-2. Since only part of the human population is affected by coronaviruses, there are probably endogenous compounds preventing the spread of these viral pathogens. It has been shown that piRNA (PIWI-interacting RNAs) interact with the mRNA of human genes and can block protein synthesis at the stage of translation. Estimated the effects of piRNA on SARS-CoV-2 genomic RNA (gRNA) in silico. A cluster of 13 piRNA binding sites (BS) in the SARS-CoV-2 gRNA region encoding the oligopeptide was identified. The second cluster of BSs 39 piRNAs also encodes the oligopeptide. The third cluster of 24 piRNA BS encodes the oligopeptide. Twelve piRNAs were identified that strongly interact with the gRNA. Based on the identified functionally important endogenous piRNAs, synthetic piRNAs (spiRNAs) are proposed that will suppress the multiplication of the coronavirus even more strongly. These spiRNAs and selected endogenous piRNAs have little effect on human 17494 protein-coding genes, indicating a low probability of side effects. The piRNA and spiRNA selection methodology created for the control of SARS-CoV-2 (NC_045512.2) can be used to control all strains of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Genome , Humans , RNA, Guide, Kinetoplastida , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , SARS-CoV-2/genetics
4.
Genes (Basel) ; 13(5)2022 04 29.
Article in English | MEDLINE | ID: mdl-35627185

ABSTRACT

The variability of nucleotide repeats is considered one of the causes of diseases, but their biological function is not understood. In recent years, the interaction of miRNAs and piRNAs with the mRNAs of genes responsible for developing neurodegenerative and oncological diseases and diabetes have been actively studied. We explored candidate genes with nucleotide repeats to predict associations with miRNAs and piRNAs. The parameters of miRNAs and piRNA binding sites with mRNAs of human genes having nucleotide repeats were determined using the MirTarget program. This program defines the start of the initiation of miRNA and piRNA binding to mRNAs, the localization of miRNA and piRNA binding sites in the 5'-untranslated region (5'UTR), coding sequence (CDS) and 3'-untranslated region (3'UTR); the free energy of binding; and the schemes of nucleotide interactions of miRNAs and piRNAs with mRNAs. The characteristics of miRNAs and piRNA binding sites with mRNAs of 73 human genes were determined. The 5'UTR, 3'UTR and CDS of the mRNAs of genes are involved in the development of neurodegenerative, oncological and diabetes diseases with GU, AC dinucleotide and CCG, CAG, GCC, CGG, CGC trinucleotide repeats. The associations of miRNAs, piRNAs and candidate target genes could be recommended for developing methods for diagnosing diseases, including neurodegenerative diseases, oncological diseases and diabetes.


Subject(s)
MicroRNAs , 3' Untranslated Regions/genetics , 5' Untranslated Regions , Computational Biology/methods , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Nucleotides , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Trinucleotide Repeats
5.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615932

ABSTRACT

Multiple sclerosis (MS) is a common inflammatory demyelinating disease with a high mortality rate. MS is caused by many candidate genes whose specific involvement has yet to be established. The aim of our study was to identify endogenous miRNAs and piRNAs involved in the regulation of MS candidate gene expression using bioinformatic methods. A program was used to quantify the interaction of miRNA and piRNA nucleotides with mRNA of the target genes. We used 7310 miRNAs from three databases and 40,000 piRNAs. The mRNAs of the candidate genes revealed miRNA binding sites (BSs), which were located separately or formed clusters of BSs with overlapping nucleotide sequences. The miRNAs from the studied databases were generally bound to mRNAs in different combinations, but miRNAs from only one database were bound to the mRNAs of some genes. For the first time, a direct interaction between the complete sequence of piRNA nucleotides and the nucleotides of their mRNA BSs of target genes was shown. One to several clusters of BSs of miRNA and piRNA were identified in the mRNA of ADAM17, AHI1, CD226, EOMES, EVI5, IL12B, IL2RA, KIF21B, MGAT5, MLANA, SOX8, TNFRSF1A, and ZBTB46 MS candidate genes. These piRNAs form the expression regulation system of the MS candidate genes to coordinate the synthesis of their proteins. Based on these findings, associations of miRNAs, piRNAs, and candidate genes for MS diagnosis are recommended.

6.
Nanomaterials (Basel) ; 11(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801990

ABSTRACT

Nanoscale miRNAs regulate the synthesis of most human proteins involved in differentiation, proliferation, cell cycle, apoptosis, and other processes associated with the growth and the development of an organism. miRNAs also play a number of important roles in the development of gastric cancer. In this work, we studied the quantitative characteristics of miRNA interactions with 69 candidate gastric cancer genes using bioinformatics approaches. To this end, the MirTarget program was used, which determines the characteristics of miRNA binding to mRNA in the 5'UTR, CDS, and 3'UTR. Associations of miRNAs with alternative target genes and associations of genes with alternative miRNAs were established. The cluster organization of miRNA binding sites (BSs) in mRNA was revealed, leading to the emergence of miRNA competition for binding to the mRNA of a target gene. Groups of target genes with clusters of overlapping BSs include miR-5095, miR-619-5p, miR-1273 family, miR-466, ID01030.3p-miR, ID00436.3p-miR, miR-574-5p, and ID00470.5p-miR. In the defined associations of target genes and miRNAs, miRNA BSs are organized into clusters of multiple BSs, which facilitate the design and the development of a system of chips that can be used to control the state of miRNA and target genes associations in gastric cancer.

7.
Front Genet ; 12: 647288, 2021.
Article in English | MEDLINE | ID: mdl-33859673

ABSTRACT

Parkinson's disease (PD) exhibits the second-highest rate of mortality among neurodegenerative diseases. PD is difficult to diagnose and treat due to its polygenic nature. In recent years, numerous studies have established a correlation between this disease and miRNA expression; however, it remains necessary to determine the quantitative characteristics of the interactions between miRNAs and their target genes. In this study, using novel bioinformatics approaches, the quantitative characteristics of the interactions between miRNAs and the mRNAs of candidate PD genes were established. Of the 6,756 miRNAs studied, more than one hundred efficiently bound to mRNA of 61 candidate PD genes. The miRNA binding sites (BS) were located in the 5'-untranslated region (5'UTR), coding sequence (CDS) and 3'-untranslated region (3'UTR) of the mRNAs. In the mRNAs of many genes, the locations of miRNA BS with overlapping nucleotide sequences (clusters) were identified. Such clusters substantially reduced the proportion of nucleotide sequences of miRNA BS in the 5'UTRs, CDSs, and 3'UTRs. The organization of miRNA BS into clusters leads to competition among miRNAs to bind mRNAs. Differences in the binding characteristics of miRNAs to the mRNAs of genes expressed at different rates were identified. Single miRNA BS, polysites for the binding for one miRNA, and multiple BS for two or more miRNAs in one mRNA were identified. Evolutionary changes in the BS of miRNAs and their clusters in 5'UTRs, CDSs and 3'UTRs of mRNA of orthologous candidate PD genes were established. Based on the quantitative characteristics of the interactions between miRNAs and mRNAs candidate PD genes, several associations recommended as markers for the diagnosis of PD.

8.
Front Genet ; 11: 605054, 2020.
Article in English | MEDLINE | ID: mdl-33329752

ABSTRACT

The involvement of genes and miRNAs in the development of atherosclerosis is a challenging problem discussed in recent publications. It is necessary to establish which miRNAs affect the expression of candidate genes. We used known candidate atherosclerosis genes to predict associations. The quantitative characteristics of interactions of miRNAs with mRNA candidate genes were determined using the program, which identifies the localization of miRNA binding sites in mRNA, the free energy interaction of miRNA with mRNA. In mRNAs of GAS6 and NFE2L2 candidate genes, binding sites of 21 miRNAs and of 15 miRNAs, respectively, were identified. In IRS2 mRNA binding sites of 25 miRNAs were located in a cluster of 41 nt. In ADRB3, CD36, FASLG, FLT1, PLA2G7, and PPARGC1A mRNAs, clusters of miR-466, ID00436.3p-miR, and ID01030.3p-miR BS were identified. The organization of overlapping miRNA binding sites in clusters led to their compaction and caused competition among the miRNAs. The binding of 53 miRNAs to the mRNAs of 14 candidate genes with free energy interactions greater than -130 kJ/mole was determined. The miR-619-5p was fully complementary to ADAM17 and CD36 mRNAs, ID01593.5p-miR to ANGPTL4 mRNA, ID01935.5p-miR to NFE2L2, and miR-5096 to IL18 mRNA. Associations of miRNAs and candidate atherosclerosis genes are proposed for the early diagnosis of this disease.

9.
Comput Biol Chem ; 87: 107305, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32570176

ABSTRACT

BACKGROUND: Exogenous microRNAs (miRNAs) enter the human body through food, and their effects on metabolic processes can be considerable. It is important to determine which miRNAs from plants affect the expression of human genes and the extent of their influence. METHOD: The binding sites of 738Oryza sativa miRNAs (osa-miRNAs) that interact with 17 508 mRNAs of human genes were determined using the MirTarget program. RESULT: The characteristics of the binding of 46 single osa-miRNAs to 86 mRNAs of human genes with a value of free energy (ΔG) interaction equal 94%-100% from maximum ΔG were established. The findings showed that osa-miR2102-5p, osa-miR5075-3p, osa-miR2097-5p, osa-miR2919 targeted the largest number of genes at 38, 36, 23, 19 sites, respectively. mRNAs of 86 human genes were identified as targets for 93 osa-miRNAs of all family osa-miRNAs with ΔG values equal 94%-98% from maximum ΔG. Each miRNA of the osa-miR156-5p, osa-miR164-5p, osa-miR168-5p, osa-miR395-3p, osa-miR396-3p, osa-miR396-5p, osa-miR444-3p, osa-miR529-3p, osa-miR1846-3p, osa-miR2907-3p families had binding sites in mRNAs of several human target genes. The binding sites of osa-miRNAs in mRNAs of the target genes for each family of osa-miRNAs were conserved when compared to flanking nucleotide sequences. CONCLUSION: Target mRNA human genes of osa-miRNAs are also candidate genes of cancer, cardiovascular and neurodegenerative diseases.

10.
BMC Genomics ; 18(1): 428, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28569192

ABSTRACT

BACKGROUND: Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. RESULTS: The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The mRNAs of CATAD1, ICA1L, GK5, POLH, and PRR11 genes have six miR-619-5p binding sites, and the mRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3'UTRs. The miR-619-5p binding site in the 5'UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins. Binding sites of miR-619-5p in the mRNAs of transcription factor genes ZNF429 and ZNF429 encode the AHACNP oligopeptide in another reading frame. Binding sites of miR-619-5p in the 3'UTRs of all human target genes are also present in the 3'UTRs of orthologous genes of mammals. The completely complementary binding sites for miR-619-5p are conservative in the orthologous mammalian genes. CONCLUSIONS: The majority of miR-619-5p binding sites are located in the 3'UTRs but some genes have miRNA binding sites in the 5'UTRs of mRNAs. Several genes have binding sites for miRNAs in the CDSs that are read in different open reading frames. Identical nucleotide sequences of binding sites encode different amino acids in different proteins. The binding sites of miR-619-5p in 3'UTRs, 5'UTRs and CDSs are conservative in the orthologous mammalian genes.


Subject(s)
MicroRNAs/genetics , Sequence Homology, Nucleic Acid , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Animals , Binding Sites , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Bioinformation ; 12(1): 15-8, 2016.
Article in English | MEDLINE | ID: mdl-27212839

ABSTRACT

Clustering of miRNA sequences is an important problem in molecular genetics associated cellular biology. Thousands of such sequences are known today through advancement in sophisticated molecular tools, sequencing techniques, computational resources and rule based mathematical models. Analysis of such large-scale miRNA sequences for inferring patterns towards deducing cellular function is a great challenge in modern molecular biology. Therefore, it is of interest to develop mathematical models specific for miRNA sequences. The process is to group (cluster) such miRNA sequences using well-defined known features. We describe a method for clustering of miRNA sequences using fragmented programming. Subsequently, we illustrated the utility of the model using a dendrogram (a tree diagram) for publically known A.thaliana miRNA nucleotide sequences towards the inference of observed conserved patterns.

12.
Biomed Res Int ; 2015: 962637, 2015.
Article in English | MEDLINE | ID: mdl-26114118

ABSTRACT

We searched for 2,563 microRNA (miRNA) binding sites in 17,494 mRNA sequences of human genes. miR-1322 has more than 2,000 binding sites in 1,058 genes with ΔG/ΔG m ratio of 85% and more. miR-1322 has 1,889 binding sites in CDSs, 215 binding sites in 5' UTRs, and 160 binding sites in 3' UTRs. From two to 28 binding sites have arranged localization with the start position through three nucleotides of each following binding site. The nucleotide sequences of these sites in CDSs encode oligopeptides with the same and/or different amino acid sequences. We found that 33% of the target genes encoded transcription factors. miR-1322 has arranged binding sites in the CDSs of orthologous MAMLD1, MAML2, and MAML3 genes. These sites encode a polyglutamine oligopeptide ranging from six to 47 amino acids in length. The properties of miR-1322 binding sites in orthologous and paralogous target genes are discussed.


Subject(s)
Binding Sites/genetics , Genome, Human , MicroRNAs/genetics , 3' Untranslated Regions/genetics , Base Sequence/genetics , Computational Biology , Conserved Sequence/genetics , Humans , RNA, Messenger/genetics
13.
Biomed Res Int ; 2014: 620530, 2014.
Article in English | MEDLINE | ID: mdl-25243165

ABSTRACT

This study examined binding sites of 2,578 miRNAs in the mRNAs of 12,175 human genes using the MirTarget program. It found that the miRNAs of miR-1273 family have between 33 and 1,074 mRNA target genes, with a free hybridization energy of 90% or more of its maximum value. The miR-1273 family consists of miR-1273a, miR-1273c, miR-1273d, miR-1273e, miR-1273f, miR-1273g-3p, miR-1273g-5p, miR-1273h-3p, and miR-1273h-5p. Unique miRNAs (miR-1273e, miR-1273f, and miR-1273g-3p) have more than 400 target genes. We established 99 mRNA nucleotide sequences that contain arranged binding sites for the miR-1273 family. High conservation of each miRNA binding site in the mRNA of the target genes was found. The arranged binding sites of the miR-1273 family are located in the 5'UTR, CDS, or 3'UTR of many mRNAs. Five repeating sites containing some of the miR-1273 family's binding sites were found in the 3'UTR of several target genes. The oligonucleotide sequences of miR-1273 binding sites located in CDSs code for homologous amino acid sequences in the proteins of target genes. The biological role of unique miRNAs was also discussed.


Subject(s)
Binding Sites/genetics , MicroRNAs/chemistry , MicroRNAs/metabolism , RNA, Messenger/metabolism , Base Sequence , Conserved Sequence , Databases, Genetic , Humans , MicroRNAs/genetics , Molecular Sequence Data , RNA, Messenger/chemistry , RNA, Messenger/genetics , Sequence Alignment
14.
Bioinformation ; 10(7): 423-7, 2014.
Article in English | MEDLINE | ID: mdl-25187682

ABSTRACT

The importance of miRNA in cellular regulation is gaining momentum. Therefore, it is of interest to study miRNA in human genes. Hence, the humanmRNA sequences (12,175) were searched for miRNA binding sites and 2,563predicted sites were found. We observed that the miR-3960 has more than 1000mRNA binding sites with high affinity (with ΔG/ΔGm values greater than or equal to 90%) for 375genes. The miR-3960 has 565 binding sites in the 5'UTRs and 515 sites in theCDS of mRNAs. Nucleotide sequences of the binding sites in CDS encode for polyalanine orpolyproline. It is observed that miR-3960 has binding sites in 73 mRNAs of target genesencoded transcription factors. Thus, we document predictedproperties (polysites, sites in CDS) of uncharacterized miR-3960 binding sites. The studying of the miRNA properties is important for creation of diagnostic methods of cancer.

15.
Biomed Res Int ; 2014: 720715, 2014.
Article in English | MEDLINE | ID: mdl-25162022

ABSTRACT

The binding of 2,578 human miRNAs with the mRNAs of 12,175 human genes was studied. It was established that miR-619-5p, miR-5095, miR-5096, and miR-5585-3p bind with high affinity to the mRNAs of the 1215, 832, 725, and 655 genes, respectively. These unique miRNAs have binding sites in the coding sequences and untranslated regions of mRNAs. The mRNAs of many genes have multiple miR-619-5p, miR-5095, miR-5096, and miR-5585-3p binding sites. Groups of mRNAs in which the ordering of the miR-619-5p, miR-5095, miR-5096, and miR-5585-3p binding sites differ were established. The possible functional and evolutional properties of unique miRNAs are discussed.


Subject(s)
Binding Sites , MicroRNAs/genetics , RNA, Messenger/genetics , Gene Expression Regulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...