Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Genet ; 52(2): 143-154, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33458851

ABSTRACT

Anqing six-end-white (AQ) pig performs well on resistance to coarse fodder and disease, reproduction and meat quality, offering high potential for exploitation. Environmental conditions and strict selections from local farmers have cultivated the AQ pig to be an outstanding and unique local pig breed. Thus we aim to detect genetic positive selection signatures within the AQ pig population to explore underlying genetic mechanisms. A relative extended haplotype homozygosity (REHH) test was performed in the population of 79 AQ pigs to seek evidence demonstrating that selective actions have left an imprint on the whole genome. In total, 430 500 REHH tests were performed on 53 067 core regions with average REHH tests of 8.11, average lengths of 11.50 kb and an overall length of 610.38 Mb which accounted for 26.94% of the whole genome. Finally, a total of 1819 core haplotypes (P < 0.01) and 586 candidate genes were obtained. These genes were mainly related to meat quality (MYOG, SNX19), resistance to disease (CRISPLD2, CD14) and reproduction traits (ERBB2, NRP2). A panel of genes within the 30 top significant REHH tests was mainly categorized to traits of meat quality and disease resistance. Among 13 KEGG pathways, MAPK, GnRH and Oxytocin signaling pathways, associated with the biological processes of crucial economic traits, were noteworthy. The excellent characteristics of the AQ pig benefited from the combination of natural and human factors. We provide a sketch map that shows the distribution of selection footprints on the whole genome of AQ pig and found potential genes for future studies.


Subject(s)
Breeding , Genetics, Population , Selection, Genetic , Sus scrofa/genetics , Animals , Female , Food Quality , Haplotypes , Homozygote , Male , Polymorphism, Single Nucleotide , Pork Meat
2.
Genet Mol Res ; 10(4): 3038-45, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-22180037

ABSTRACT

Glutathione-S-transferase P1 (GSTP1) is a critical enzyme of the phase II detoxification pathway. One of the common functional polymorphisms of GSTP1 is A→G at nucleotide 313, which results in an amino acid substitution (Ile105Val) at the substrate binding site of GSTP1 and reduces catalytic activity of GSTP1. To investigate the GSTP1 Ile105Val genotype frequency in prostate cancer cases in the Kashmiri population, we designed a case-control study, in which 50 prostate cancer cases and 45 benign prostate hyperplasia cases were studied for GSTP1 Ile105Val polymorphism, compared to 80 controls taken from the general population, employing the PCR-RFLP technique. We found the frequency of the three different genotypes of GSTP1 Ile105Val in our ethnic Kashmir population, i.e., Ile/Ile, Ile/Val and Val/Val, to be 52.4, 33.3 and 14.3% among prostate cancer cases, 48.5, 37.5 and 14% among benign prostate hyperplasia cases and 73.8, 21.3 and 5% in the control population, respectively. There was a significant association between the GSTP1 Ile/Val genotype and the advanced age group among the cases. We conclude that GSTP1 Ile/Val polymorphism is involved in the risk of prostate cancer development in our population.


Subject(s)
Ethnicity , Glutathione S-Transferase pi/genetics , Prostate/enzymology , Prostatic Hyperplasia/genetics , Prostatic Neoplasms/genetics , Amino Acid Substitution , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Humans , India/epidemiology , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Prostate/pathology , Prostatic Hyperplasia/enzymology , Prostatic Hyperplasia/ethnology , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/ethnology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...