Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Foods ; 12(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37509835

ABSTRACT

Papaya fruit has a limited shelf life due to its sensitivity to decay and chilling damage during cold storage. The application of methyl jasmonate (MeJA) is known to reduce the incidence of disease and chilling injury, and to maintain the overall quality of the papaya fruit when stored at low temperature. Consequently, the effects of postharvest MeJA (1 mM) immersion on papaya fruits during low-temperature storage (10 °C ± 2 °C) for 28 days were studied. The experiment revealed that MeJA treatment significantly decreased the papaya fruit's weight loss, disease incidence, and chilling injury index. Furthermore, the accumulation of malondialdehyde and hydrogen peroxide was markedly lower after the application of MeJA. In addition, MeJA treatment exhibited significantly higher total phenols, ascorbic acid, antioxidant activity, and titratable acidity in contrast to the control. Similarly, MeJA-treated papaya fruits showed higher antioxidant enzymatic activity (superoxide dismutase, catalase, and peroxidase enzymes) with respect to the control fruits. In addition, MeJA reduced the soluble solids content, ripening index, pH, and sugar contents compared to the control fruits. Furthermore, MeJA-treated papaya fruit exhibited higher sensory and organoleptic quality attributes with respect to untreated papaya fruits. These findings suggested that postharvest MeJA application might be a useful approach for attenuating disease incidence and preventing chilling injury by enhancing antioxidant activities along with enhanced overall quality of papaya fruits during low-temperature storage.

2.
Front Plant Sci ; 14: 1132024, 2023.
Article in English | MEDLINE | ID: mdl-36968425

ABSTRACT

Introduction: Oil palm is the world's highest yielding oil crop and its palm oil has high nutritional value, making it an oilseed plant with important economic value and application prospects. After picking, oil palm fruits exposed to air will gradually become soft and accelerate the process of fatty acid rancidity, which will not only affect their flavor and nutritional value, but also produce substances harmful to the human body. As a result, studying the dynamic change pattern of free fatty acids and important fatty acid metabolism-related regulatory genes during oil palm fatty acid rancidity can provide a theoretical basis for improving palm oil quality and extending its shelf life. Methods: The fruit of two shell types of oil palm, Pisifera (MP) and Tenera (MT), were used to study the changes of fruit souring at different times points of postharvesting, combined with LC-MS/MS metabolomics and RNA-seq transcriptomics techniques to analyze the dynamic changes of free fatty acids during fruit rancidity, and to find out the key enzyme genes and proteins in the process of free fatty acid synthesis and degradation according to metabolic pathways. Results and discussion: Metabolomic study revealed that there were 9 different types of free fatty acids at 0 hours of postharvest, 12 different types of free fatty acids at 24 hours of postharvest, and 8 different types of free fatty acids at 36 hours of postharvest. Transcriptomic research revealed substantial changes in gene expression between the three harvest phases of MT and MP. Combined metabolomics and transcriptomics analysis results show that the expression of SDR, FATA, FATB and MFP four key enzyme genes and enzyme proteins in the rancidity of free fatty acids are significantly correlated with Palmitic acid, Stearic acid, Myristic acid and Palmitoleic acid in oil palm fruit. In terms of binding gene expression, the expression of FATA gene and MFP protein in MT and MP was consistent, and both were expressed higher in MP. FATB fluctuates unevenly in MT and MP, with the level of expression growing steadily in MT and decreasing in MP before increasing. The amount of SDR gene expression varies in opposite directions in both shell types. The above findings suggest that these four enzyme genes and enzyme proteins may play an important role in regulating fatty acid rancidity and are the key enzyme genes and enzyme proteins that cause differences in fatty acid rancidity between MT and MP and other fruit shell types. Additionally, differential metabolite and differentially expressed genes were present in the three postharvest times of MT and MP fruits, with the difference occurring 24 hours postharvest being the most notable. As a result, 24 hours postharvest revealed the most obvious difference in fatty acid tranquility between MT and MP shell types of oil palm. The results from this study offer a theoretical underpinning for the gene mining of fatty acid rancidity of various oil palm fruit shell types and the enhancement of oilseed palm acid-resistant germplasm cultivation using molecular biology methods.

3.
Front Plant Sci ; 13: 1039373, 2022.
Article in English | MEDLINE | ID: mdl-36561448

ABSTRACT

Introduction: Exogenous melatonin (EMT) application has been used to reduce postharvest senescence and improve the quality and antioxidant enzyme activities of papaya fruits during cold storage. Methods: The effects of exogenous melatonin application (1. 5 mM) were investigated on papaya fruits during cold storage (10°C ± 2°C) for 28 days in the present study. Results and discussion: The EMT treatment delayed postharvest senescence significantly with lower maturing status compared with untreated papaya fruits (control). In addition, EMT treatment maintained substantially higher titratable acidity values and ascorbic acid content but significantly lower soluble solids content and lower weight loss compared with the untreated fruits. Concerning the antioxidant capacity, the EMT-treated papaya fruit exhibited markedly higher total phenolic content and, consequently, higher DPPH-radical scavenging activity than the control group. The EMT treatment not only kept a higher enzyme activity of superoxide dismutase, peroxidase, and catalase but also significantly inhibited the accumulation of hydrogen peroxide and malondialdehyde, along with satisfying sensory attributes. Conclusion: The findings of this study indicated that EMT application could be commercially used as an eco-friendly strategy to reduce postharvest senescence and maintain the fresh-like quality traits of papaya fruit during cold storage.

4.
Sci Rep ; 11(1): 24120, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916569

ABSTRACT

The present study was undertaken with aims to produced catalyst loaded on low-cost clay supports and to utilize plum waste seed oil for the production of biodiesel. For this purpose, Bentonite-potassium ferricyanide, White pocha-potassium ferricyanide, Granite-potassium ferricyanide, Sindh clay-potassium ferricyanide, and Kolten-potassium ferricyanide composites were prepared. Transesterification of plum oil under the different conditions of reactions like catalysts concentrations (0.15, 0.3 and 0.6 g), temperature (50, 60, 70 and 80 °C), reaction time (2, 4 and 6 h) and oil to methanol ratio (1:10) was conducted. The maximum biodiesel yield was recorded for Bentonite-potassium ferricyanide composite. This composite was subjected to calcination process to produce Calcinized bentonite-potassium ferricyanide composite and a further improvement in biodiesel amount was recorded. The fuel quality parameters of all biodiesel samples were in standard range. Gas chromatographic mass spectrometric analysis confirmed the presence of oleic and linoleic acids in the plum seed oil. The characterization of composite was done using FTIR, SEM and EDX. Two infrared bands are observed in the spectrum from 1650 to 1630 cm-1 indicates that the composite materials contained highly hydrogen bonded water. The presence of surface hydroxyls groups can also be confirmed from FTIR data. SEM image clearly show the presence of nano-rods on the surface of Granite-potassium ferricyanide and Kolten-potassium ferricyanide composites. Another interesting observation that can be recorded from SEM images is the changes in surface characteristic of Bentonite-potassium ferricyanide composite after calcination (at 750 °C, 1 atm for 4 h). Calcinized bentonite-potassium ferricyanide composite found to contain more nano rod like structures at its surface as compared to Bentonite-potassium ferricyanide composite which contained spherical particles. EDX data of Bentonite-potassium ferricyanide composite and Calcinized bentonite-potassium ferricyanide composite show that after calcination carbon and oxygen was reduced. The other lost volatile compounds after calcination were of Na, Mg, Al, Si, and S. The XRD spectrum of pure bentonite showed the average crystal size of 24.46 nm and calcinized bentonite of 25.59 nm. The average crystal size of bentonite and potassium ferricyanide composite and its calcinized form was around 33.76 nm and 41.05 nm, respectively.

5.
Commun Biol ; 4(1): 105, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483627

ABSTRACT

Coconut (Cocos nucifera) is the emblematic palm of tropical coastal areas all around the globe. It provides vital resources to millions of farmers. In an effort to better understand its evolutionary history and to develop genomic tools for its improvement, a sequence draft was recently released. Here, we present a dense linkage map (8402 SNPs) aiming to assemble the large genome of coconut (2.42 Gbp, 2n = 32) into 16 pseudomolecules. As a result, 47% of the sequences (representing 77% of the genes) were assigned to 16 linkage groups and ordered. We observed segregation distortion in chromosome Cn15, which is a signature of strong selection among pollen grains, favouring the maternal allele. Comparing our results with the genome of the oil palm Elaeis guineensis allowed us to identify major events in the evolutionary history of palms. We find that coconut underwent a massive transposable element invasion in the last million years, which could be related to the fluctuations of sea level during the glaciations at Pleistocene that would have triggered a population bottleneck. Finally, to better understand the facultative halophyte trait of coconut, we conducted an RNA-seq experiment on leaves to identify key players of signaling pathways involved in salt stress response. Altogether, our findings represent a valuable resource for the coconut breeding community.


Subject(s)
Biological Evolution , Cocos/genetics , Genome, Plant , Salt Tolerance/genetics , Signal Transduction/genetics , Chromosome Mapping , Chromosomes, Plant , DNA Transposable Elements , Genotyping Techniques , Reference Standards
6.
PeerJ ; 8: e8788, 2020.
Article in English | MEDLINE | ID: mdl-32231884

ABSTRACT

BACKGROUND: Extensive milling processes have deprived wheat flour from essential nutrients. The objective of the current study was to assess the nutritive quality of commercial wheat flour (soft flour (SF)) through analyses of proximate composition and functional properties as well as quantification of benzoyl peroxide (BPO; added as bleaching agent in the SF) by comparing the results with whole wheat flour (WF; never received any additives). METHODS: The samples included commercial SF purchased from the local supplier of different flour mills (who use BPO as additive) and a control sample without additives was prepared by grinding the seeds harvested from wheat (Triticum aestivum L.; Inqulab 91) crop grown in the experimental field of University of Agriculture, Faisalabad, under optimized field conditions without any fertilizers and insecticides. Functional properties (including bulk density, water absorption capacity, oil absorption capacity, emulsifying activity, foaming capacity, least gelatinization concentration and gelatinization temperature) and proximate composition (including moisture content, ash contents, crude protein, gluten and starch contents) were determined and compared for all the samples. Benzoyl peroxide (BPO) and Benzoic Acid (BA) quantification was performed through High Performance Liquid Chromatography. Finally dietary intake was estimated for BPO and BA. RESULTS: Results showed that SF had lesser fiber, protein and ash contents, whereas, higher damaged starch, fat, gluten and bulk density. A parallel experiment under selected conditions (temperature, time and solute concentration) showed dissociation of BPO into BA soon after the exposure. Observed BA range (13.77 mg/g after 16 h) in SF and exposure level assessment (44.3 ± 1.36 mg/kg/BW) showed higher intake of BA on the consumption of SF. The results revealed the superiority of WF over SF in nutritive qualities as well as free of toxicants such as BA.

7.
PLoS One ; 14(11): e0225768, 2019.
Article in English | MEDLINE | ID: mdl-31774880

ABSTRACT

Oil palm (Elaeis guineensis Jacq.) is a representative tropical oil crop that is sensitive to low temperature. Oil palm can experience cold damage when exposed to low temperatures for a long period. During these unfavorable conditions, a series of gene induction/repression and physico-chemical changes occur in oil palm. To better understand the link between these events, we investigated the expression levels of various genes (including COR410, COR413, CBF1, CBF2, CBF3, ICE1-1, ICE1-2, ICE1-4, SIZ1-1, SIZ1-2, ZAT10, ZAT12) and the accumulation of osmolytes (proline, malondialdehyde and sucrose). Likewise, the activity of superoxide dismutase (SOD) in oil palm under cold stress (4°C, 8°C and 12°C) was examined. The results showed a clear link among the expression of CBFs (especially CBF1 and CBF3) and the all genes examined under cold stress (12°C). The expression of CBF1 and CBF2 also exhibited a positive link with the accumulation of sucrose and proline under cold stress in oil palm. At 4°C, the proline content exhibited a very significant correlation with electrolyte leakage in oil palm. The results of this study provide necessary information regarding the mechanism of the response and adaption of oil palm to cold stress. Additionally, they offer clues for the selection or development of cold-tolerant cultivars from the available germplasms of oil palm.


Subject(s)
Antioxidants/metabolism , Arecaceae/genetics , Arecaceae/metabolism , Cold-Shock Response/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Transcriptome , Arecaceae/growth & development , Electrolytes/metabolism , Gene Expression Profiling , Malondialdehyde/metabolism , Proline/analysis
8.
Biosci Rep ; 39(1)2019 01 31.
Article in English | MEDLINE | ID: mdl-30429235

ABSTRACT

Complex plant tissues vary in hardness, i.e. some are succulent, while others are complex to break. Besides, plant metabolites, such as polysaccharides, proteins, polyphenols and lipids, can greatly interfere with the RNA extraction. So, in order to obtain a high-quality RNA from the complex tissues (like coconut endosperm, coconut apple and coconut leaf bud) rich in secondary metabolites, a robust method is demanded. Several methods (MRIP, CTAB and TRIZOL) have been used previously for the isolation of quality RNA from the coconut tissues, but without any success. The present study will provide with the details of a new method (Quick and Reliable RNA Extraction Method or QRREM), which have efficiently isolated the intact RNA form the complex tissues of coconut compared with CTAB, Trizol and RNA plant. The method has been validated for the isolation of high-quality intact RNA from the other available plant species (Areca/betel nut, mint and spring onion). The method has various advantages over the other methods in terms of time and cost effectiveness. Furthermore, the resulted RNA from various tissues of coconut performed well in the downstream experiments, i.e. reverse transcription and PCR for the production and amplification of cDNA.


Subject(s)
Cocos/chemistry , Endosperm/chemistry , Liquid-Liquid Extraction/methods , RNA, Plant/isolation & purification , Buffers , Glycerol/chemistry , Phenol/chemistry , Plant Extracts/chemistry , Povidone/chemistry , Reverse Transcriptase Polymerase Chain Reaction/methods , Solvents/chemistry
9.
J Hazard Mater ; 355: 170-179, 2018 08 05.
Article in English | MEDLINE | ID: mdl-29800911

ABSTRACT

Increased industrial processes have introduced emerging toxic pollutants into the environment. Phytoremediation is considered to be a very useful, economical and ecofriendly way of controlling these pollutants, however, certain pollutants can potentially travel through the food chain and accumulate at hazardous levels. Four isomers of dinitrotoluenes (DNT) were investigated and observed their potential toxicity towards A. thaliana. Two different aphid species (generalist and specialist) were allowed to feed on plants treated with DNTs and toxicity to aphids determined. Reduced metabolites of DNT (in both plant and aphids) were recovered and quantified through GC-MS analyses. 2,6-DNT was observed to be the toxic of the DNTs tested. Complete metabolism of DNTs to their reduced products was never achieved for higher concentrations. Regioselectivity was observed in the case of 2,4-DNT, with 4A2NT as the dominant isomer. Feeding aphids showed a similar toxicity pattern for DNT isomers as host plants. Metabolites were recovered from the body of aphids, demonstrating the potential transport of metabolites through the food chain. Plants show varied toxicity responses towards the DNT isomers. Aphids fed on A. thaliana plants treated with DNTs were shown to have ANTs present, which reflects the propagation of DNT metabolites through the food chain.


Subject(s)
Aphids/drug effects , Arabidopsis/drug effects , Dinitrobenzenes/toxicity , Animals , Aphids/physiology , Arabidopsis/metabolism , Biodegradation, Environmental , Fertility/drug effects , Food Chain , Phloem , Plant Roots/drug effects , Plant Roots/metabolism , Plant Stems/drug effects , Plant Stems/metabolism
10.
J Food Sci Technol ; 54(9): 2973-2979, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28928538

ABSTRACT

The aim of present study was to evaluate the different pomegranate cultivars for physicochemical properties and to identify the best cultivars suitable for food processing and future breeding. Various attributes of fruit (including length, weight and diameter), rind (thickness and weight), calyx (length), aril (weight, percentage, length and width), seed (length and width) and juice (titratable acidity and soluble solids or TSS) were evaluated. Total and reducing sugar, pH, ascorbic acid, total phenolic contents, antioxidant activity and maturity index were also evaluated. A significant difference in all tested parameters was noted amongst the tested cultivars except calyx length, rind thickness, arils and seed dimensions. The antioxidant activity and total phenolic contents of pomegranate cultivars were ranged from 15.77 to 42% and 1158.9 to 1540.7 mg GAE L-1. The cultivars Tor-390 and Sorkhak-859 were sweet in taste, while the rest of the cultivars have sweet sour taste. The study concluded that the majority of cultivars were rich source of total phenolics, ascorbic acid, total soluble solid and total sugars, which are beneficial to health. Some of the elite cultivars (NKP-561, SRK-296, SZR-385, SRK-878) showed high quality attributes and were suitable for future breeding programs.

11.
PLoS One ; 12(5): e0175551, 2017.
Article in English | MEDLINE | ID: mdl-28467413

ABSTRACT

An oxygen insensitive azoreductase was purified from a novel bacterial strain (Staphylococcus sp. KU898286) that was isolated from an abandoned site of the textile waste discharge unit. The isolated enzyme had efficiently cleaved the azo-bonds through reductive transformation under aerobic conditions. Initial phenotypic characterization and final construction of phylogenetic tree on the basis of 16s rDNA demonstrated 99% resemblance of the isolate to Staphylococcus aureus. The purified azoreductase was found to have a broad spectrum activity that reduced RR241 at a concentration of 50mg/L with pH between 6-8 and 30°C temperature). Besides, the reactive red 241 (RR241) was reduced at extracellular level as well as NADH dependent intracellular level. Complete reduction/ decolourization of RR241 were achieved after 18 hrs of exposure. The final degradation product observed to be 2-nephthol was purified by High Pressure Liquid Chromatography (HPLC) and the molecular mass was computed by Gas Chromatography-Mass spectroscopy (GC-MS). The study revealed a cost effective and eco-friendly approach to degrade the toxic dyes into less toxic products by Staphylococcus sp. KU898286.


Subject(s)
Coloring Agents/metabolism , NADH, NADPH Oxidoreductases/metabolism , Oxygen/metabolism , Staphylococcus/enzymology , Electrophoresis, Polyacrylamide Gel , NADH, NADPH Oxidoreductases/isolation & purification , Nitroreductases
12.
Mol Biol Evol ; 28(4): 1439-54, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21135149

ABSTRACT

In order to understand how the morphology of plant species has diversified over time, it is necessary to decipher how the underlying developmental programs have evolved. The regulatory network controlling shoot meristem activity is likely to have played an important role in morphological diversification and useful insights can be gained by comparing monocots and eudicots. These two distinct monophyletic groups of angiosperms diverged 130 Ma and are characterized by important differences in their morphology. Several studies of eudicot species have revealed a conserved role for NAM and CUC3 genes in meristem functioning and pattern formation through the definition of morphogenetic boundaries during development. In this study, we show that NAM- and CUC3-related genes are conserved in palms and grasses, their diversification having predated the radiation of monocots and eudicots. Moreover, the NAM-miR164 posttranscriptional regulatory module is also conserved in palm species. However, in contrast to the CUC3-related genes, which share a similar expression pattern between the two angiosperm groups, the expression domain of the NAM-miR164 module differs between monocot and eudicot species. In our studies of spatial expression patterns, we compared existing eudicot data with novel results from our work using two palm species (date palm and oil palm) and two members of the Poaceae (rice and millet). In addition to contrasting results obtained at the gene expression level, major differences were also observed between eudicot and monocot NAM-related genes in the occurrence of putative cis-regulatory elements in their promoter sequences. Overall, our results suggest that although NAM- and CUC3-related proteins are functionally equivalent between monocots and eudicots, evolutionary radiation has resulted in heterotopy through alterations in the expression domain of the NAM-miR164 regulatory module.


Subject(s)
Biological Evolution , Magnoliopsida/anatomy & histology , Magnoliopsida/genetics , Meristem/genetics , Meristem/metabolism , MicroRNAs/genetics , Base Sequence , Databases, Genetic , Gene Expression Regulation, Plant , Genes, Plant , Magnoliopsida/classification , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...