Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 24(4): 894-8, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18760910

ABSTRACT

Today's biosensors and drug delivery devices are increasingly incorporating lithographically patterned circuitry that is placed within microns of the biological molecules to be detected or released. Elevated temperatures due to Joule heating from the underlying circuitry cannot only reduce device performance, but also alter the biological activity of such molecules (i.e. binding, enzymatic, folding). As a consequence, biochip design and characterization will increasingly require local measurements of the temperature and temperature gradients on the biofunctionalized surface. We have developed a technique to address this challenge based on the use of DNA molecular beacons as a nanoscale temperature probe. The surface of fused-silica chips with lithographically patterned, current-carrying gold rings have been functionalized with a layer of molecular beacons. We utilize the temperature dependence of the molecular beacons to calibrate the temperature at the center of the rings as a function of applied current from 25 to 50 degrees C. The fluorescent images of the rings reveal the extent of heating to the surrounding chip due to the applied current while resolving temperature gradients over length scales of less than 500nm. Finite element analysis and analytic calculations of the distribution of heat in the vicinity of the current-carrying rings agree well with the experimental results. Thus, molecular beacons are shown to be a viable tool for temperature calibration of micron-sized circuitry and the visualization of submicron temperature gradients.


Subject(s)
Biosensing Techniques/instrumentation , DNA/chemistry , DNA/radiation effects , Nanotechnology/instrumentation , Oligonucleotide Array Sequence Analysis/instrumentation , Spectrometry, Fluorescence/instrumentation , Thermography/instrumentation , Biosensing Techniques/methods , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity , Thermography/methods
2.
Environ Sci Technol ; 40(7): 2352-6, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16646473

ABSTRACT

Deoxynivalenol (DON), a mycotoxin produced by several Fusaruim species, is a worldwide contaminant of foods and feeds. Because of the potential dangers due to accidental or intentional contamination of foods with DON, there is a need to develop a rapid and highly sensitive method for easy identification and quantification of DON. In this study, we have developed and utilized a competitive immunoassay technique to detect DON in various food matrixes and indoor air samples using an array biosensor. A DON-biotin conjugate, immobilized on a NeutrAvidin-coated optical waveguide, competed with the DON in the sample for binding to fluorescently labeled DON monoclonal antibodies. To demonstrate a simple procedure amenable for on-site use, DON-spiked cornmeal, cornflakes, wheat, barley, and oats were extracted with methanol-water (3:1) and assayed without cleanup or preconcentration. The limits of detection ranged from 0.2 ng/mL in buffer to 50 ng/g in oats. The detection limit of DON spiked into an aqueous effluent from an air sampler was 4 ng/mL.


Subject(s)
Air Pollution, Indoor , Biosensing Techniques , Food Analysis , Trichothecenes/analysis , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...