Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 15(1): e0183223, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38059639

ABSTRACT

IMPORTANCE: Our study leverages gene editing techniques in Plasmodium falciparum asexual blood stage parasites to profile novel mutations in mutant PfCRT, an important mediator of piperaquine resistance, which developed in Southeast Asian field isolates or in parasites cultured for long periods of time. We provide evidence that increased parasite fitness of these lines is the primary driver for the emergence of these PfCRT variants. These mutations differentially impact parasite susceptibility to piperaquine and chloroquine, highlighting the multifaceted effects of single point mutations in this transporter. Molecular features of drug resistance and parasite physiology were examined in depth using proteoliposome-based drug uptake studies and peptidomics, respectively. Energy minimization calculations, showing how these novel mutations might impact the PfCRT structure, suggested a small but significant effect on drug interactions. This study reveals the subtle interplay between antimalarial resistance, parasite fitness, PfCRT structure, and intracellular peptide availability in PfCRT-mediated parasite responses to changing drug selective pressures.


Subject(s)
Antimalarials , Malaria, Falciparum , Parasites , Piperazines , Quinolines , Animals , Plasmodium falciparum , Quinolines/pharmacology , Quinolines/chemistry , Chloroquine/pharmacology , Antimalarials/pharmacology , Drug Resistance/genetics , Mutation , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Malaria, Falciparum/parasitology
2.
Sci Transl Med ; 15(686): eadc9249, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36888694

ABSTRACT

Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the P. falciparum cytoplasmic isoleucyl tRNA synthetase (cIRS). Engineering two of the mutations into drug-naïve parasites recapitulated the resistance phenotype, and parasites with conditional knockdowns of cIRS became hypersensitive to two thienopyrimidines. Purified recombinant P. vivax cIRS inhibition, cross-resistance, and biochemical assays indicated a noncompetitive, allosteric binding site that is distinct from that of known cIRS inhibitors mupirocin and reveromycin A. Our data show that Plasmodium cIRS is an important chemically and genetically validated target for next-generation medicines for malaria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/chemistry , Isoleucine-tRNA Ligase/metabolism , Plasmodium falciparum/metabolism , Malaria, Falciparum/parasitology , Malaria/drug therapy , Drug Resistance
3.
Sci Transl Med ; 14(667): eabo7219, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36260689

ABSTRACT

Compounds acting on multiple targets are critical to combating antimalarial drug resistance. Here, we report that the human "mammalian target of rapamycin" (mTOR) inhibitor sapanisertib has potent prophylactic liver stage activity, in vitro and in vivo asexual blood stage (ABS) activity, and transmission-blocking activity against the protozoan parasite Plasmodium spp. Chemoproteomics studies revealed multiple potential Plasmodium kinase targets, and potent inhibition of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4Kß) and cyclic guanosine monophosphate-dependent protein kinase (PKG) was confirmed in vitro. Conditional knockdown of PI4Kß in ABS cultures modulated parasite sensitivity to sapanisertib, and laboratory-generated P. falciparum sapanisertib resistance was mediated by mutations in PI4Kß. Parasite metabolomic perturbation profiles associated with sapanisertib and other known PI4Kß and/or PKG inhibitors revealed similarities and differences between chemotypes, potentially caused by sapanisertib targeting multiple parasite kinases. The multistage activity of sapanisertib and its in vivo antimalarial efficacy, coupled with potent inhibition of at least two promising drug targets, provides an opportunity to reposition this pyrazolopyrimidine for malaria.


Subject(s)
Antimalarials , Plasmodium , Animals , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , MTOR Inhibitors , 1-Phosphatidylinositol 4-Kinase , Guanosine Monophosphate , Life Cycle Stages , TOR Serine-Threonine Kinases , Sirolimus , Mammals
4.
PLoS Pathog ; 18(10): e1010926, 2022 10.
Article in English | MEDLINE | ID: mdl-36306287

ABSTRACT

The emergence of Plasmodium falciparum parasite resistance to dihydroartemisinin + piperaquine (PPQ) in Southeast Asia threatens plans to increase the global use of this first-line antimalarial combination. High-level PPQ resistance appears to be mediated primarily by novel mutations in the P. falciparum chloroquine resistance transporter (PfCRT), which enhance parasite survival at high PPQ concentrations in vitro and increase the risk of dihydroartemisinin + PPQ treatment failure in patients. Using isogenic Dd2 parasites expressing contemporary pfcrt alleles with differential in vitro PPQ susceptibilities, we herein characterize the molecular and physiological adaptations that define PPQ resistance in vitro. Using drug uptake and cellular heme fractionation assays we report that the F145I, M343L, and G353V PfCRT mutations differentially impact PPQ and chloroquine efflux. These mutations also modulate proteolytic degradation of host hemoglobin and the chemical inactivation of reactive heme species. Peptidomic analyses reveal significantly higher accumulation of putative hemoglobin-derived peptides in the PPQ-resistant mutant PfCRT isoforms compared to parental PPQ-sensitive Dd2. Joint transcriptomic and metabolomic profiling of late trophozoites from PPQ-resistant or -sensitive isogenic lines reveals differential expression of genes involved in protein translation and cellular metabolism. PPQ-resistant parasites also show increased susceptibility to an inhibitor of the P. falciparum M17 aminopeptidase that operates on short globin-derived peptides. These results reveal unique physiological changes caused by the gain of PPQ resistance and highlight the potential therapeutic value of targeting peptide metabolism in P. falciparum.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Chloroquine/pharmacology , Chloroquine/metabolism , Parasites/metabolism , Protozoan Proteins/metabolism , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Antimalarials/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Artemisinins/pharmacology , Mutation , Hemoglobins/metabolism , Heme/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...