Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Materials (Basel) ; 15(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431409

ABSTRACT

In recent decades, researchers have begun to investigate innovative sustainable construction materials for the development of greener and more environmentally friendly infrastructures. The main purpose of this article is to investigate the possibility of employing date palm tree waste as a natural fiber alternative for conventional steel and polypropylene fibers (PPFs) in concrete. Date palm fibers are a common agricultural waste in Middle Eastern nations, particularly Saudi Arabia. As a result, this research examined the engineering properties of high-strength concrete using date palm fibers, as well as the performance of traditional steel and PPF concrete. The concrete samples were made using 0.0%, 0.20%, 0.60%, and 1.0% by volume of date palm, steel, and polypropylene fibers. Ten concrete mixtures were made in total. Compressive strength, flexural strength, splitting tensile strength, density, ultrasonic pulse velocity (UPV), water absorption capability, and water permeability tests were performed on the fibrous-reinforced high-strength concrete. With a 1% proportion of date palm, steel, and polypropylene fibers, the splitting tensile strength improved by 17%, 43%, and 16%, respectively. By adding 1% fiber, flexural strength was increased by 60% to 85%, 67% to 165%, and 61% to 79%. In addition, date palm fibers outperformed steel and PPFs in terms of density, UPV, and water permeability. As a result, date palm fibers might potentially be employed in the present construction sector to improve the serviceability of structural elements.

3.
Materials (Basel) ; 15(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36431578

ABSTRACT

In this study, ground glass powder and crushed waste glass were used to replace coarse and fine aggregates. Within the scope of the study, fine aggregate (FA) and coarse aggregate (CA) were changed separately with proportions of 10%, 20%, 40%, and 50%. According to the mechanical test, including compression, splitting tensile, and flexural tests, the waste glass powder creates a better pozzolanic effect and increases the strength, while the glass particles tend to decrease the strength when they are swapped with aggregates. As observed in the splitting tensile test, noteworthy progress in the tensile strength of the concrete was achieved by 14%, while the waste glass used as a fractional replacement for the fine aggregate. In samples where glass particles were swapped with CA, the tensile strength tended to decrease. It was noticed that with the adding of waste glass at 10%, 20%, 40%, and 50% of FA swapped, the increase in flexural strength was 3.2%, 6.3%, 11.1%, and 4.8%, respectively, in amount to the reference one (6.3 MPa). Scanning electron microscope (SEM) analysis consequences also confirm the strength consequences obtained from the experimental study. While it is seen that glass powder provides better bonding with cement with its pozzolanic effect and this has a positive effect on strength consequences, it is seen that voids are formed in the samples where large glass pieces are swapped with aggregate and this affects the strength negatively. Furthermore, simple equations using existing data in the literature and the consequences obtained from the current study were also developed to predict mechanical properties of the concrete with recycled glass for practical applications. Based on findings obtained from our study, 20% replacement for FA and CA with waste glass is recommended.

4.
Materials (Basel) ; 15(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36431736

ABSTRACT

Portland cement (PC) is considered the most energy-intensive building material and contributes to around 10% of global warming. It exacerbates global warming and climate change, which have a harmful environmental impact. Efforts are being made to produce sustainable and green concrete as an alternative to PC concrete. As a result, developing a more sustainable strategy and eco-friendly materials to replace ordinary concrete has become critical. Many studies on geopolymer concrete, which has equal or even superior durability and strength compared to traditional concrete, have been conducted for this purpose by many researchers. Geopolymer concrete (GPC) has been developed as a possible new construction material for replacing conventional concrete, offering a clean technological choice for long-term growth. Over the last few decades, geopolymer concrete has been investigated as a feasible green construction material that can reduce CO2 emissions because it uses industrial wastes as raw materials. GPC has proven effective for structural applications due to its workability and analogical strength compared to standard cement concrete. This review article discusses the engineering properties and microstructure of GPC and shows its merits in construction applications with some guidelines and suggestions recommended for both the academic community and the industrial sector. This literature review also demonstrates that the mechanical properties of GPC are comparable and even sometimes better than those of PC concrete. Moreover, the microstructure of GPC is significantly different from that of PC concrete microstructure and can be affected by many factors.

5.
Materials (Basel) ; 15(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36363102

ABSTRACT

In this study, the effect of waste glass on the mechanical properties of concrete was examined by conducting a series of compressive strength, splitting tensile strength and flexural strength tests. According to this aim, waste glass powder (WGP) was first used as a partial replacement for cement and six different ratios of WGP were utilized in concrete production: 0%, 10%, 20%, 30%, 40%, and 50%. To examine the combined effect of different ratios of WGP on concrete performance, mixed samples (10%, 20%, 30%) were then prepared by replacing cement, and fine and coarse aggregates with both WGP and crashed glass particles. Workability and slump values of concrete produced with different amounts of waste glass were determined on the fresh state of concrete, and these properties were compared with those of plain concrete. For the hardened concrete, 150 mm × 150 mm × 150 mm cubic specimens and cylindrical specimens with a diameter of 100 mm and a height of 200 mm were tested to identify the compressive strength and splitting tensile strength of the concrete produced with waste glass. Next, a three-point bending test was carried out on samples with dimensions of 100 × 100 × 400 mm, and a span length of 300 mm to obtain the flexure behavior of different mixtures. According to the results obtained, a 20% substitution of WGP as cement can be considered the optimum dose. On the other hand, for concrete produced with combined WGP and crashed glass particles, mechanical properties increased up to a certain limit and then decreased owing to poor workability. Thus, 10% can be considered the optimum replacement level, as combined waste glass shows considerably higher strength and better workability properties. Furthermore, scanning electron microscope (SEM) analysis was performed to investigate the microstructure of the composition. Good adhesion was observed between the waste glass and cementitious concrete. Lastly, practical empirical equations have been developed to determine the compressive strength, splitting tensile strength, and flexure strength of concrete with different amounts of waste glass. Instead of conducting an experiment, these strength values of the concrete produced with glass powder can be easily estimated at the design stage with the help of proposed expressions.

6.
Materials (Basel) ; 15(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36295166

ABSTRACT

Geopolymer (GP) concrete is a novel construction material that can be used in place of traditional Portland cement (PC) concrete to reduce greenhouse gas emissions and effectively manage industrial waste. Fly ash (FA) has long been utilized as a key constituent in GPs, and GP technology provides an environmentally benign alternative to FA utilization. As a result, a thorough examination of GP concrete manufactured using FA as a precursor (FA-GP concrete) and employed as a replacement for conventional concrete has become crucial. According to the findings of current investigations, FA-GP concrete has equal or superior mechanical and physical characteristics compared to PC concrete. This article reviews the clean production, mix design, compressive strength (CS), and microstructure (Ms) analyses of the FA-GP concrete to collect and publish the most recent information and data on FA-GP concrete. In addition, this paper shall attempt to develop a comprehensive database based on the previous research study that expounds on the impact of substantial aspects such as physio-chemical characteristics of precursors, mixes, curing, additives, and chemical activation on the CS of FA-GP concrete. The purpose of this work is to give viewers a greater knowledge of the consequences and uses of using FA as a precursor to making effective GP concrete.

7.
Materials (Basel) ; 15(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36079534

ABSTRACT

According to the authors' best information, the majority of research focuses on other waste materials, such as recycling industrial waste (glass, silica fume, marble and waste foundry sand), etc. However, some researchers suggest dune sand as an alternative material for concrete production, but knowledge is still scarce. Therefore, a comprehensive review is required on dune sand to evaluate its current progress as well as its effects on the strength and durability properties of concrete. The review presents detailed literature on dune sand in concrete. The important characteristics of concrete such as slump, compressive, flexural, cracking behaviors, density, water absorption and sulfate resistance were considered for analysis. Results indicate that dune sand can be used in concrete up to 40% without any negative effect on strength and durability. The negative impact of dune sand on strength and durability was due to poor grading and fineness, which restricts the complete (100%) substation of dune sand. Furthermore, a decrease in flowability was observed. Finally, the review highlights the research gap for future studies.

8.
Materials (Basel) ; 15(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36143534

ABSTRACT

The safe disposal of an enormous amount of waste glass (WG) in several countries has become a severe environmental issue. In contrast, concrete production consumes a large amount of natural resources and contributes to environmental greenhouse gas emissions. It is widely known that many kinds of waste may be utilized rather than raw materials in the field of construction materials. However, for the wide use of waste in building construction, it is necessary to ensure that the characteristics of the resulting building materials are appropriate. Recycled glass waste is one of the most attractive waste materials that can be used to create sustainable concrete compounds. Therefore, researchers focus on the production of concrete and cement mortar by utilizing waste glass as an aggregate or as a pozzolanic material. In this article, the literature discussing the use of recycled glass waste in concrete as a partial or complete replacement for aggregates has been reviewed by focusing on the effect of recycled glass waste on the fresh and mechanical properties of concrete.

9.
Materials (Basel) ; 15(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955288

ABSTRACT

A main global challenge is finding an alternative material for cement, which is a major source of pollution to the environment because it emits greenhouse gases. Investigators play a significant role in global waste disposal by developing appropriate methods for its effective utilization. Geopolymers are one of the best options for reusing all industrial wastes containing aluminosilicate and the best alternative materials for concrete applications. Waste wood ash (WWA) is used with other waste materials in geopolymer production and is found in pulp and paper, wood-burning industrial facilities, and wood-fired plants. On the other hand, the WWA manufacturing industry necessitates the acquisition of large tracts of land in rural areas, while some industries use incinerators to burn wood waste, which contributes to air pollution, a significant environmental problem. This review paper offers a comprehensive review of the current utilization of WWA with the partial replacement with other mineral materials, such as fly ash, as a base for geopolymer concrete and mortar production. A review of the usage of waste wood ash in the construction sector is offered, and development tendencies are assessed about mechanical, durability, and microstructural characteristics. The impacts of waste wood ash as a pozzolanic base for eco-concreting usages are summarized. According to the findings, incorporating WWA into concrete is useful to sustainable progress and waste reduction as the WWA mostly behaves as a filler in filling action and moderate amounts of WWA offer a fairly higher compressive strength to concrete. A detail study on the source of WWA on concrete mineralogy and properties must be performed to fill the potential research gap.

10.
PLoS One ; 17(7): e0269664, 2022.
Article in English | MEDLINE | ID: mdl-35830388

ABSTRACT

In recent decades, several studies have considered the use of plastic waste as a partial substitute for aggregate in green concrete. Such concrete has been limited to non-structural applications due to its low strength. This raises whether such concrete can be enhanced for use in some structural applications. This paper reports an attempt to develop a structural-grade concrete containing plastic waste aggregate with high proportions of substitution and confined with carbon fiber reinforced polymer (CFRP) fabrics. Experimental research was conducted involving the casting and testing 54 plain and confined concrete cylinders. A concrete mixture was designed in which the fine aggregate was partially replaced by polyethylene terephthalate (PET) waste plastic at ratios of 0%, 25%, and 50%, and with different w/c ratios of 0.40, 0.45, and 0.55. The results show that confinement has a substantial positive effect on the compressive behavior of PET concrete. The enhancement efficiency increases by 8-190%, with higher enhancement levels for higher substitution ratios. Adding one layer of CFRP fabric raises the ultimate strength of samples that have lost compressive strength to a level close to that of unconfined samples not containing PET. This confinement is accompanied by an increase in the slope of the stress-strain curve and greater axial and lateral strain values at failure. For the specimens confined by CFRP fabric, PET aggregate can be used as a partial substitute for sand at a replacement ratio of up to 50% by volume for structural applications. This paper also considers the ability of existing models to predict the strength of confined-PET concrete circular cross-sections by comparing model predictions with experimental results. The strength of confined PET concrete elements can't be accurately predicted by any of the models that are already out there. It's important to come up with a new model for these elements.


Subject(s)
Construction Materials , Polyethylene Terephthalates , Carbon Fiber , Plastics , Polymers
11.
Sci Rep ; 11(1): 21525, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34728731

ABSTRACT

Industrial waste has been rapidly increased day by day because of the fast-growing population which results environmental pollutions. It has been recommended that the disposal of industrial waste would be greatly reduced if it could be incorporated in concrete production. In cement concrete technology, there are many possibilities to use waste materials either as cement replacement or aggregate in concrete production. Two major industrials waste are glass and marble waste. The basic objective of this investigation is to examine the characteristics of concrete waste glass (WG) as binding material in proportions 10%, 20% and 30% by weight of cement. Furthermore, to obtain high strength concrete, waste marble in proportion of 40%, 50% and 60% by weight cement as fine aggregate were used as a filler material to fill the voids between concrete ingredients. Fresh properties were evaluated through slump cone test while mechanical performance was evaluated through compressive strength and split tensile strength which were performed after 7 days, 28 days and 56 days curing. Results show that, workability of concrete decreased with incorporation of waste glass and marble waste. Furthermore, mechanical performance improved considerably up 20% and 50% substitution of waste glass and waste marble respectively. Statistical approach of Response Surface Methodology (RSM) was used optimize both waste materials in concrete. Results indicate better agreement between statistical and experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...