Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34478374

ABSTRACT

Custom foot orthoses (CFOs) have shown treatment effectiveness by providing improved pressure/load redistribution, skeletal support and comfort level. However, the current design methodologies of CFOs have some problems: (1) the plantar surface is captured without considering the soft tissue impedance, (2) the stiffness of the CFOs is limited to rigid, semi-rigid and soft, which ignores the potential effect of local variation of stiffness on the interface pressure/load distribution and subjective evaluations, and (3) the lack of a human-in-the-loop may lead to multiple design-to-deliver iterations. A new prescription methodology of CFOs is required to satisfy the pressure/load distribution, improve comfort level and decrease iterations. METHOD: A measurement system which provides INterface with Tunable Ergonomic properties using a Reconfigurable Framework with Adjustable Compliant Elements (INTERFACE system) is developed to implement the Rapid Evaluate and Adjust Device (READ) methodology. The geometry and stiffness of the Medial Longitudinal Arch (MLA) support provided by the INTERFACE system can be adjusted via linear actuators and tunable stiffness mechanisms, based on objective interface pressure/load distribution and subjective feedback evaluations. Validation tests were conducted on 13 subjects to measure the plantar pressure/load distribution and record the subjective feedback in different combinations of geometry and stiffness. RESULTS: The interface pressure/load distribution and subjective feedback of the support level indicate the efficacy of the adjustable geometry and stiffness. As the stiffness and geometrical height increased, the plantar loadings increased in the MLA region and decreased in the rear foot. Geometrical fitting can be achieved with the reconfigurable MLA support. The integration of locally adjustable stiffness makes it possible to fine tune the plantar pressure/load and provides the subjects with options of orthotic stiffness. CONCLUSION: The proposed INTERFACE system can be applied to conduct the measurement of the desired orthotic properties which satisfy the interface pressure/load requirement and the subject's comfort.


Subject(s)
Foot Orthoses , Equipment Design , Foot , Humans , Orthotic Devices , Pressure , Treatment Outcome
2.
IEEE Trans Neural Syst Rehabil Eng ; 28(8): 1760-1770, 2020 08.
Article in English | MEDLINE | ID: mdl-32746316

ABSTRACT

OBJECTIVE: Custom foot orthoses (CFOs) are typically used for the prevention and cure of lower extremity injuries (LEIs). Typically, CFOs are designed and prescribed based on iterative loops including: (1) follow-up loops between the patient and the physician, and (2) design feedback loops between the physician and the fabricator. The current prescription methodology has some deficiencies, i.e. excessive time to satisfactory treatment, and low repeatability in custom fabrication because of missing alignment, soft tissue considerations, and subjective feedback. There are significant opportunities to develop a new CFOs prescription procedure which can improve accuracy prior to the fabrication process by reducing time through minimizing iterations. METHODS: First, a novel "rapid evaluate and adjust device" (READ) prescription methodology is proposed for CFO design by combining the follow-up loops with design feedback loop. To support the idea of the READ prescription method a novel 3D ergonomic measurement system (3DEMS) is developed. The 3DEMS is designed for the following key targets to: (1) improve the communication between the patient/physician and the fabricator, (2) reduce time to satisfactory treatment, (3) improve repeatability by considering the alignment and the soft tissue deformations, (4) archive digitally with minimal data, (5) reduce the system complexity, and (6) validate with plantar pressure measurements (i.e. Novel Pedar®). The design process of the 3DEMS involved the following steps: (1) 3D data collection at the desired loading, (2) nested optimization to determine optimal segment design, and (3) system fabrication considering alignment and feedback control. RESULTS: The results show that the READ prescription method with 3DEMS can be used to recreate the medial longitudinal arch for a range of arch height indices (AHI) by using a minimal number of parameters i.e. 6 parameters, and significant increases in mean peak pressure are observed between optimized and barefoot or flat segments. CONCLUSION: This study establishes that the proposed READ prescription method with the 3DEMS may be used for CFOs prescription due to better communication between individuals in the follow-up and design loops, less time for satisfactory treatment, improved repeatability, archivable data, and low system complexity. SIGNIFICANCE: The developed system may be used as measurement systems for CFOs, and in the future the proposed 3DEMS may prove highly important for the measurement of CFOs for flat feet.


Subject(s)
Foot Orthoses , Equipment Design , Feasibility Studies , Foot , Humans , Prescriptions
3.
Article in English | MEDLINE | ID: mdl-28630200

ABSTRACT

Visceral leishmaniasis is a neglected tropical disease that causes significant morbidity and mortality worldwide. Characterization of the pharmacokinetics and pharmacodynamics of antileishmanial drugs in preclinical models is important for drug development and use. Here we investigated the pharmacodynamics and drug distribution of liposomal amphotericin B (AmBisome) in Leishmania donovani-infected BALB/c mice at three different dose levels and two different time points after infection. We additionally compared drug levels in plasma, liver, and spleen in infected and uninfected BALB/c mice over time. At the highest administered dose of 10 mg/kg AmBisome, >90% parasite inhibition was observed within 2 days after drug administration, consistent with drug distribution from blood to tissue within 24 h and a fast rate of kill. Decreased drug potency was observed in the spleen when AmBisome was administered on day 35 after infection, compared to day 14 after infection. Amphotericin B concentrations and total drug amounts per organ were lower in liver and spleen when AmBisome was administered at the advanced stage of infection and compared to those in uninfected BALB/c mice. However, the magnitude of difference was lower when total drug amounts per organ were estimated. Differences were also noted in drug distribution to L. donovani-infected livers and spleens. Taken together, our data suggest that organ enlargement and other pathophysiological factors cause infection- and organ-specific drug distribution and elimination after administration of single-dose AmBisome to L. donovani-infected mice. Plasma drug levels were not reflective of changes in drug levels in tissues.


Subject(s)
Amphotericin B/pharmacology , Amphotericin B/pharmacokinetics , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/pharmacokinetics , Leishmaniasis, Visceral/drug therapy , Animals , Drug Carriers/administration & dosage , Female , Leishmania donovani/drug effects , Leishmaniasis, Visceral/metabolism , Leishmaniasis, Visceral/parasitology , Liposomes/administration & dosage , Liver/metabolism , Liver/parasitology , Mice , Mice, Inbred BALB C , Spleen/metabolism , Spleen/parasitology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...