Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 12(6): 130, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35607392

ABSTRACT

Xanthomonas oryzae pv. oryzae (Xoo) is a destructive pathogen that causes bacterial blight disease of rice worldwide. Xoo uses T3SS (type III secretion system) effectors to subvert rice innate immunity. However, the comprehensive knowledge of rice genes involved in T3SS effectors-mediated interaction remains unclear. In this study, the transcriptome profiles of rice infected with a virulent Xoo strain from North-eastern region of India relatives to its avirulent strain (that lacks functional T3SS) were analyzed at early (2-6 hpi) and late (16-24 hpi) hours of infection. Out of total 255 differentially expressed genes (DEGs), during early infection, 62 and 70 genes were upregulated and downregulated, respectively. At late infection, 70 and 53 genes were upregulated and downregulated, respectively. The transcriptomic data identified many differentially expressed resistant genes, transposons, transcription factors, serine/threonine protein kinase, cytochrome P450 and peroxidase genes that are involved in plant defense. Pathway analysis revealed that these DEGs are involved in hormone signaling, plant defense, cellular metabolism, growth and development processes. DEGs associated with plant defense were also validated through quantitative real-time PCR. Our study brings a comprehensive picture of the rice genes that are being differentially expressed during bacterial blight infection. Nevertheless, the DEG-associated pathways would provide sensible targets for developing resistance to bacterial blight. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03193-4.

2.
Front Plant Sci ; 6: 503, 2015.
Article in English | MEDLINE | ID: mdl-26217357

ABSTRACT

Pyrroline-5-carboxylate (P5C) is an intermediate product of both proline biosynthesis and catabolism. Recent evidences indicate that proline-P5C metabolism is tightly regulated in plants, especially during pathogen infection and abiotic stress. However, role of P5C and its metabolism in plants has not yet been fully understood. Studies indicate that P5C synthesized in mitochondria has a role in both resistance (R)-gene-mediated and non-host resistance against invading pathogens. Proline dehydrogenase and delta-ornithine amino transferase-encoding genes, both involved in P5C synthesis in mitochondria are implicated in defense response of Nicotiana benthamiana and Arabidopsis thaliana against bacterial pathogens. Such defense response is proposed to involve salicylic acid-dependent pathway, reactive oxygen species (ROS) and hypersensitive response (HR)-associated cell death. Recently HR, a form of programmed cell death (PCD), has been proposed to be induced by changes in mitochondrial P5C synthesis or the increase in P5C levels per se in plants inoculated with either a host pathogen carrying suitable avirulent (Avr) gene or a non-host pathogen. Consistently, A. thaliana mutant plants deficient in P5C catabolism showed HR like cell death when grown in external P5C or proline supplemented medium. Similarly, yeast and plant cells under oxidative stress were shown to increase ROS production and PCD due to increase in P5C levels. Similar mechanism has also been reported as one of the triggers for apoptosis in mammalian cells. This review critically analyzes results from various studies and enumerates the pathways for regulation of P5C levels in the plant cell, especially in mitochondria, during pathogen infection. Further, mechanisms regulating P5C- mediated defense responses, namely HR are outlined. This review also provides new insights into the differential role of proline-P5C metabolism in plants exposed to pathogen infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...