Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 346: 112167, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925476

ABSTRACT

The secondary plant metabolites are of enormous importance because of their extensive medicinal, nutraceutical, and industrial applications. In plants, these secondary metabolites are often found in extremely small amounts, therefore, following the discovery of any prospective metabolite, the main constraining element is the ability to generate enough material for use in both industrial and therapeutic settings. In order to satisfy the rising demand for value-added metabolites, researchers prefer to use different molecular approaches for scalable and sustainable production of these phytocompounds. Here, we discuss the emerging regulatory trends in engineering these bioactive-phytocompounds and provide recommendation on successful employment of these state-of-the-art technologies for translation of these academic researches into novel process and products.

2.
Front Microbiol ; 13: 993834, 2022.
Article in English | MEDLINE | ID: mdl-36569081

ABSTRACT

Among a few hundred mycotoxins, aflatoxins had always posed a major threat to the world. Apart from A. flavus, A. parasiticus, and A. nomius of Aspergillus genus, which are most toxin-producing strains, several fungal bodies including Fusarium, Penicillium, and Alternaria that can biosynthesis aflatoxins. Basically, there are four different types of aflatoxins (Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2)) are produced as secondary metabolites. There are certainly other types of aflatoxins found but they are the by-products of these toxins. The fungal agents generally infect the food crops during harvesting, storing, and/or transporting; making a heavy post-harvest as well as economic loss in both developed and developing countries. And while ingesting the crop products, these toxins get into the dietary system causing aflatoxicosis, liver cirrhosis, etc. Therefore, it is imperative to search for certain ways to control the spread of infections and/or production of these toxins which may also not harm the crop harvest. In this review, we are going to discuss some sustainable methods that can effectively control the spread of infection and inhibit the biosynthesis of aflatoxins.

3.
Biotechnol Rep (Amst) ; 36: e00761, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36159743

ABSTRACT

The therapeutic efficacy of Artemisia annua L. is governed by artemisinin (ART), prevalently produced by A. annua extraction. Due to the modest amount of ART (0.01-1 %dw) in this plant, commercialization of ACTs is difficult. In this study, the floral-dip based transformation protocol for A. annua was developed to enhance expression of artemisinin biosynthesis genes and ART content. For dipping, the effective infiltration media components were optimized, and to obtain high transformation (26.9%) partially open bud stage capitulum of floral development was used. Hygromycin phospho-transferase (hptII) selection marker was used to validate the transformed T1 progenies. The copy numbers of the transgene (hptII) in T1 progenies were determined using a sensitive, high-throughput SYBR Green based quantitative RT-PCR. The results of the hptII transgene were compared with those of the low copy number, internal standard (hmgr). Using optimised PCR conditions, one, two and three transgene copies in T1 transformants were achieved.

4.
ACS Omega ; 7(35): 30967-30977, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36092636

ABSTRACT

With the advent of modern lifestyles, diabetes-related comorbidities attributed the importance of low-caloric natural sweetener plants such as Stevia rebaudiana. This plant is the viable source of steviol glycosides (SGs) and other economically important secondary metabolites. Glandular trichomes (GTs) play the role as a reservoir for all secondary products present in the plant species. Therefore, the present study was carried out to evaluate the influence of different plant growth regulators (PGRs) on GT density and its impact on the SG content. The direct shoot regeneration system was developed on Murashige and Skoog (MS) + benzyl aminopurine (BAP) (1.0 mg/L) + naphthaleneacetic acid (NAA) (0.5 mg/L), and MS + BAP (1.5 mg/L) + NAA (0.5 mg/L) from nodal and leaf explants, respectively. Among the combination of PGRs used, MS medium fortified with BAP (1.0 mg/L) and 2,4-dichlorophenoxyacetic acid (2,4-D) (0.5 mg/L) played a significant role in increasing the GT density on leaf and stem tissues of S. rebaudiana. Furthermore, high-performance thin-layer chromatography and gas chromatography-mass spectrophotometry data confirmed a notable rise in SGs and other valuable secondary metabolites. Thus, the protocol developed can be used for the propagation of stevia with an improved metabolic profile at a large scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...